ViSizer: A Visualization Resizing Framework

Visualization resizing is useful for many applications where users may use different display devices. General resizing techniques (e.g., uniform scaling) and image-resizing techniques suffer from several drawbacks, as they do not consider the content of the visualizations. This work introduces ViSizer, a perception-based framework for automatically resizing a visualization to fit any display. We formulate an energy function based on a perception model (feature congestion), which aims to determine the optimal deformation for every local region. We subsequently transform the problem into an optimization problem by the energy function. An efficient algorithm is introduced to iteratively solve the problem, allowing for automatic visualization resizing.

[1]  Alan J. Dix,et al.  A Taxonomy of Clutter Reduction for Information Visualisation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[2]  Frans W Cornelissen,et al.  A crowding model of visual clutter. , 2009, Journal of vision.

[3]  Saiful Islam,et al.  Mahalanobis Distance , 2009, Encyclopedia of Biometrics.

[4]  M. Sheelagh T. Carpendale,et al.  3-dimensional pliable surfaces: for the effective presentation of visual information , 1995, UIST '95.

[5]  Yuanzhen Li,et al.  Feature congestion: a measure of display clutter , 2005, CHI.

[6]  Olga Sorkine-Hornung,et al.  Visual media retargeting , 2009, SIGGRAPH ASIA Courses.

[7]  Manojit Sarkar,et al.  Graphical fisheye views , 1994, CACM.

[8]  Steven P. Reiss,et al.  Stretching the rubber sheet: a metaphor for viewing large layouts on small screens , 1993, UIST '93.

[9]  Edward L. Robertson,et al.  Techniques for non-linear magnification transformations , 1996, Proceedings IEEE Symposium on Information Visualization '96.

[10]  Pierre Dragicevic,et al.  Artistic resizing: a technique for rich scale-sensitive vector graphics , 2006, SIGGRAPH '06.

[11]  Serdar Tasiran,et al.  TreeJuxtaposer: scalable tree comparison using Focus+Context with guaranteed visibility , 2003, ACM Trans. Graph..

[12]  Hong Zhou,et al.  Geometry-Based Edge Clustering for Graph Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[13]  M. Sheelagh T. Carpendale,et al.  Achieving higher magnification in context , 2004, UIST '04.

[14]  Furu Wei,et al.  Context preserving dynamic word cloud visualization , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[15]  S. Avidan,et al.  Seam carving for content-aware image resizing , 2007, SIGGRAPH 2007.

[16]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[17]  Scott E. Hudson,et al.  Ultra-lightweight constraints , 1996, UIST '96.

[18]  Ravin Balakrishnan,et al.  "Beating" Fitts' law: virtual enhancements for pointing facilitation , 2004, Int. J. Hum. Comput. Stud..

[19]  Jean-Daniel Fekete,et al.  Hierarchical Aggregation for Information Visualization: Overview, Techniques, and Design Guidelines , 2010, IEEE Transactions on Visualization and Computer Graphics.

[20]  O. Sorkine,et al.  Optimized scale-and-stretch for image resizing , 2008, SIGGRAPH 2008.

[21]  Heidrun Schumann,et al.  Presenting Large and Complex Information Sets on Mobile Handhelds , 2004 .

[22]  Edward Rolf Tufte,et al.  The visual display of quantitative information , 1985 .

[23]  Benjamin B. Bederson,et al.  A review of overview+detail, zooming, and focus+context interfaces , 2009, CSUR.

[24]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[25]  Daniel Cohen-Or,et al.  Non-homogeneous Content-driven Video-retargeting , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[26]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[27]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[28]  M. Sheelagh T. Carpendale,et al.  On the effects of viewing cues in comprehending distortions , 2002, NordiCHI '02.

[29]  Pak Chung Wong,et al.  Visual Analytics: Building a Vibrant and Resilient National Science , 2009, Inf. Vis..

[30]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004, IEEE Symposium on Information Visualization.

[31]  Martin Wattenberg,et al.  Participatory Visualization with Wordle , 2009, IEEE Transactions on Visualization and Computer Graphics.

[32]  Tamara Munzner,et al.  Effects of 2D geometric transformations on visual memory , 2006, APGV '06.

[33]  D. Burr,et al.  Visual Clutter Causes High-Magnitude Errors , 2006, PLoS biology.

[34]  Ulrik Brandes,et al.  Map Warping for the Annotation of Metro Maps , 2008, 2008 IEEE Pacific Visualization Symposium.

[35]  Yuanzhen Li,et al.  Measuring visual clutter. , 2007, Journal of vision.

[36]  Dinesh Manocha,et al.  LU-GPU: Efficient Algorithms for Solving Dense Linear Systems on Graphics Hardware , 2005, ACM/IEEE SC 2005 Conference (SC'05).

[37]  Olga Sorkine-Hornung,et al.  Optimized scale-and-stretch for image resizing , 2008, SIGGRAPH Asia '08.

[38]  Bernhard Jenny,et al.  Cultural Heritage: Studying cartographic heritage: Analysis and visualization of geometric distortions , 2011 .

[39]  Peter J. Stuckey,et al.  Fast Node Overlap Removal , 2005, GD.