Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge?

Recent data imply that for much of the Proterozoic Eon (2500 to 543 million years ago), Earth's oceans were moderately oxic at the surface and sulfidic at depth. Under these conditions, biologically important trace metals would have been scarce in most marine environments, potentially restricting the nitrogen cycle, affecting primary productivity, and limiting the ecological distribution of eukaryotic algae. Oceanic redox conditions and their bioinorganic consequences may thus help to explain observed patterns of Proterozoic evolution.

[1]  Donald E. Canfield,et al.  Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides , 2002, Nature.

[2]  R. J. Williams,et al.  The involvement of molybdenum in life. , 2002, Biochemical and biophysical research communications.

[3]  H. Sigel,et al.  Molybdenum and tungsten : their roles in biological processes , 2002 .

[4]  B. Ward,et al.  Nitrogen Cycling in the Ocean: New Perspectives on Processes and Paradigms , 2002, Applied and Environmental Microbiology.

[5]  A. Knoll,et al.  Middle Proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia , 2002 .

[6]  E. Moores Pre–1 Ga (pre-Rodinian) ophiolites: Their tectonic and environmental implications , 2002 .

[7]  A. Anbar,et al.  Natural mass-dependent variations in the isotopic composition of molybdenum , 2001 .

[8]  P. Wignall,et al.  Black shales on the basin margin: a model based on examples from the Upper Jurassic of the Boulonnais, northern France , 2001 .

[9]  Robert J.P. Williams,et al.  The Biological Chemistry of the Elements: The Inorganic Chemistry of Life , 2001 .

[10]  Linda C. Kah,et al.  Geochemistry of a 1.2 Ga carbonate-evaporite succession, northern Baffin and Bylot Islands: implications for Mesoproterozoic marine evolution , 2001 .

[11]  N. Butterfield Paleobiology of the late Mesoproterozoic (ca. 1200 Ma) Hunting Formation, Somerset Island, arctic Canada , 2001 .

[12]  T. Lyons,et al.  Pre-Rodinian (Mesoproterozoic) supercontinental rifting along the western margin of Laurentia: geochemical evidence from the Belt-Purcell Supergroup , 2001 .

[13]  E. Boyle,et al.  Soluble and Colloidal Iron in the Oligotrophic North Atlantic and North Pacific , 2001, Science.

[14]  A. Knoll,et al.  Morphological and ecological complexity in early eukaryotic ecosystems , 2001, Nature.

[15]  D. Canfield,et al.  Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments , 2001 .

[16]  D. Capone Marine nitrogen fixation: what's the fuss? , 2001, Current opinion in microbiology.

[17]  R. Raiswell,et al.  An Indicator of Water-Column Anoxia: Resolution of Biofacies Variations in the Kimmeridge Clay (Upper Jurassic, U.K.) , 2001 .

[18]  Donald E. Canfield,et al.  Isotopic evidence for microbial sulphate reduction in the early Archaean era , 2001, Nature.

[19]  A. Muro-Pastor,et al.  Nitrogen Control in Cyanobacteria , 2001, Journal of bacteriology.

[20]  Kerry S. Smith,et al.  Prokaryotic carbonic anhydrases. , 2000, FEMS microbiology reviews.

[21]  E. Boyle,et al.  Phosphate depletion in the western North Atlantic Ocean. , 2000, Science.

[22]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[23]  A. Knoll,et al.  Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon , 2000, Paleobiology.

[24]  Donald E. Canfield,et al.  The Archean sulfur cycle and the early history of atmospheric oxygen. , 2000, Science.

[25]  C. Calver Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the overprint of water column stratification , 2000 .

[26]  J. Kirschvink,et al.  Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Schreiber,et al.  Sulfur geochemical constraints on mesoproterozoic restricted marine deposition: lower Belt Supergroup, northwestern United States , 2000 .

[28]  E. Carpenter,et al.  New perspectives on nitrogen-fixing microorganisms in tropical and subtropical oceans. , 2000, Trends in microbiology.

[29]  R. Buick,et al.  Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia , 1999 .

[30]  D. Canfield,et al.  The evolution of the sulfur cycle , 1999 .

[31]  A. J. Kaufman,et al.  THE ABUNDANCE OF 13C IN MARINE ORGANIC MATTER AND ISOTOPIC FRACTIONATION IN THE GLOBAL BIOGEOCHEMICAL CYCLE OF CARBON DURING THE PAST 800 MA , 1999 .

[32]  H. Strauss GEOLOGICAL EVOLUTION FROM ISOTOPE PROXY SIGNALS : SULFUR , 1999 .

[33]  A. J. Kaufman,et al.  δ13C stratigraphy of the Proterozoic Bylot Supergroup, Baffin Island, Canada: implications for regional lithostratigraphic correlations , 1999 .

[34]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[35]  F. Robert,et al.  Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? , 1999 .

[36]  S. Emerson,et al.  The geochemistry of redox sensitive trace metals in sediments , 1999 .

[37]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[38]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[39]  P. Falkowski,et al.  Biogeochemical Controls and Feedbacks on Ocean Primary Production , 1998, Science.

[40]  M. Brasier,et al.  A billion years of environmental stability and the emergence of eukaryotes: new data from northern Australia. , 1998, Geology.

[41]  D. Lindell,et al.  Regulation of ntcA Expression and Nitrite Uptake in the Marine Synechococcus sp. Strain WH 7803 , 1998, Journal of bacteriology.

[42]  E. Stiefel Transition metal sulfur chemistry and its relevance to molybdenum and tungsten enzymes , 1998 .

[43]  W. Zumft Cell biology and molecular basis of denitrification. , 1997, Microbiology and molecular biology reviews : MMBR.

[44]  O. Meyer,et al.  N2 Fixation by Streptomyces thermoautotrophicus Involves a Molybdenum-Dinitrogenase and a Manganese-Superoxide Oxidoreductase That Couple N2Reduction to the Oxidation of Superoxide Produced from O2by a Molybdenum-CO Dehydrogenase* , 1997, The Journal of Biological Chemistry.

[45]  A. J. Kaufman,et al.  Neoproterozoic Fossils in Mesoproterozoic Rocks? Chemostratigraphic Resolution of a Biostratigraphic Conundrum from the North China Platform , 1997 .

[46]  T. Lyons Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea , 1997 .

[47]  A. J. Kaufman,et al.  Isotopes, ice ages, and terminal Proterozoic earth history. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Edward J. Carpenter,et al.  Trichodesmium, a Globally Significant Marine Cyanobacterium , 1997 .

[49]  Paul G. Falkowski,et al.  Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean , 1997, Nature.

[50]  N. Butterfield Plankton ecology and the Proterozoic-Phanerozoic transition , 1997, Paleobiology.

[51]  A. Hooper,et al.  Evidence for an iron center in the ammonia monooxygenase from Nitrosomonas europaea , 1996, FEBS letters.

[52]  R. Eady Structure−Function Relationships of Alternative Nitrogenases , 1996 .

[53]  J. Karhu,et al.  Carbon isotopes and the rise of atmospheric oxygen , 1996 .

[54]  D. Canfield,et al.  A model for iron deposition to euxinic Black Sea sediments , 1996 .

[55]  Donald E. Canfield,et al.  Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.

[56]  G. Filippelli,et al.  Phosphorus geochemistry of equatorial Pacific sediments , 1996 .

[57]  D. Lindell,et al.  Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea , 1995 .

[58]  R Buick,et al.  Stable isotopic compositions of carbonates from the Mesoproterozoic Bangemall Group, northwestern Australia. , 1995, Chemical geology.

[59]  A. J. Kaufman,et al.  The carbon-isotopic composition of Proterozoic carbonates: Riphean successions from northwestern Siberia (Anabar Massif, Turukhansk Uplift). , 1995, American journal of science.

[60]  A. J. Kaufman,et al.  Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. , 1995, Precambrian research.

[61]  D. Canfield,et al.  The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. , 1994, Science.

[62]  Ellery D. Ingall,et al.  Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus , 1994 .

[63]  A. Knoll Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D. Kirchman,et al.  Isotope fractionation during ammonium uptake by marine microbial assemblages , 1994 .

[65]  F. Morel,et al.  Zinc and carbon co-limitation of marine phytoplankton , 1994, Nature.

[66]  H. Strauss The sulfur isotopic record of Precambrian sulfates: new data and a critical evaluation of the existing record , 1993 .

[67]  H. Ohmoto,et al.  3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. , 1993, Science.

[68]  K. Ruttenberg Reassessment of the oceanic residence time of phosphorus , 1993 .

[69]  W. Landing,et al.  The investigation of dissolved and suspended-particulate trace metal fractionation in the Black Sea , 1992 .

[70]  H. Strauss,et al.  Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment , 1992, Nature.

[71]  B. Runnegar,et al.  Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. , 1992, Science.

[72]  M. Walter,et al.  Late Proterozoic and Early Cambrian microfossils and biostratigraphy, northern Anhui and Jiangsu, central-eastern China , 1992 .

[73]  R. Clayton,et al.  Geochemistry of Precambrian carbonates: V. Late Paleoproterozoic seawater , 1992 .

[74]  R. Clayton,et al.  Geochemistry of Precambrian carbonates. IV - Early Paleoproterozoic (2.25 +/- 0.25 Ga) seawater , 1992 .

[75]  J. Lipps,et al.  The Origin and Early Evolution of Metazoa , 1992 .

[76]  S. Emerson,et al.  Ocean anoxia and the concentrations of molybdenum and vanadium in seawater , 1991 .

[77]  B. Tebo,et al.  Isotopic fractionation of dissolved ammonium at the oxygen-hydrogen sulfide interface in anoxic waters , 1991 .

[78]  S. Jacobsen,et al.  The chemical evolution of Precambrian seawater: Evidence from REEs in banded iron formations , 1990 .

[79]  A. J. Kaufman,et al.  Carbonate petrography, kerogen distribution, and carbon and oxygen isotope variations in an early Proterozoic transition from limestone to iron-formation deposition, Transvaal Supergroup, South Africa. , 1990, Economic geology and the bulletin of the Society of Economic Geologists.

[80]  R. Miller,et al.  Molybdenum and vanadium nitrogenases of Azotobacter chroococcum. Low temperature favours N2 reduction by vanadium nitrogenase. , 1988, The Biochemical journal.

[81]  S. Jacobsen,et al.  Nd isotopic variations in Precambrian banded iron formations , 1988 .

[82]  H. Evans,et al.  Bacterial alternative nitrogen fixation systems. , 1988, Critical reviews in microbiology.

[83]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.

[84]  H. Ohmoto,et al.  Bacterial activity in the warmer, sulphate-bearing, Archaean oceans , 1987, Nature.

[85]  A. J. Kaufman,et al.  Secular variation in carbon isotope ratios from Upper Proterozoic successions of Svalbard and East Greenland , 1986, Nature.

[86]  R. Collier Molybdenum in the Northeast Pacific Ocean1 , 1985 .

[87]  G. Habermehl,et al.  ReviewPure appl. Chem: Rinehart, K. L., et al. Marine natural products as sources of antiviral, antimicrobial, and antineoplastic Agents. 53, 795 (1981). (K. L. Rinehart, University of Illinois, Urbana, IL 61801, U.S.A.) , 1983 .

[88]  E. M. Cameron Sulphate and sulphate reduction in early Precambrian oceans , 1982 .

[89]  B. Runnegar Oxygen requirements, biology and phylogenetic significance of the late Precambrian worm Dickinsonia, and the evolution of the burrowing habit , 1982 .

[90]  R. Eppley Primary productivity in the sea , 1980, Nature.

[91]  H. Sakai,et al.  The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation , 1980 .

[92]  P. Falkowski Primary productivity in the sea , 1980 .

[93]  M. McElroy,et al.  Fixation of Nitrogen in the Prebiotic Atmosphere , 1979, Science.

[94]  H. D. Holland,et al.  The Oceans; A Possible Source of Iron in Iron-Formations , 1973 .

[95]  K. Turekian,et al.  Molybdenum in marine deposits , 1973 .

[96]  P. Cloud A working model of the primitive Earth , 1972 .

[97]  F. Mackenzie,et al.  Evolution of sedimentary rocks , 1971 .