Faster queries for longest substring palindrome after block edit

Palindromes are important objects in strings which have been extensively studied from combinatorial, algorithmic, and bioinformatics points of views. Manacher [J. ACM 1975] proposed a seminal algorithm that computes the longest substring palindromes (LSPals) of a given string in O(n) time, where n is the length of the string. In this paper, we consider the problem of finding the LSPal after the string is edited. We present an algorithm that uses O(n) time and space for preprocessing, and answers the length of the LSPals in O(l + log log n) time, after a substring in T is replaced by a string of arbitrary length l. This outperforms the query algorithm proposed in our previous work [CPM 2018] that uses O(l + log n) time for each query.

[1]  Hideo Bannai,et al.  Longest substring palindrome after edit , 2018, CPM.

[2]  김동규,et al.  [서평]「Algorithms on Strings, Trees, and Sequences」 , 2000 .

[3]  Costas S. Iliopoulos,et al.  Longest Common Factor After One Edit Operation , 2017, SPIRE.

[4]  Zvi Galil,et al.  Parallel Detection of all Palindromes in a String , 1995, Theor. Comput. Sci..

[5]  Arseny M. Shur,et al.  Finding Distinct Subpalindromes Online , 2013, Stringology.

[6]  Gregory Kucherov,et al.  Searching for Gapped Palindromes , 2008, CPM.

[7]  Valmir Carneiro Barbosa,et al.  Finding approximate palindromes in strings , 2002, Pattern Recognit..

[8]  Hideo Bannai,et al.  Longest Lyndon Substring After Edit , 2018, CPM.

[9]  Pawel Gawrychowski,et al.  Tight Tradeoffs for Real-Time Approximation of Longest Palindromes in Streams , 2016, CPM.

[10]  Peter Weiner,et al.  Linear Pattern Matching Algorithms , 1973, SWAT.

[11]  Uzi Vishkin,et al.  Finding Level-Ancestors in Trees , 1994, J. Comput. Syst. Sci..

[12]  Michael A. Bender,et al.  The Level Ancestor Problem Simplified , 2002, LATIN.

[13]  Shunsuke Inenaga,et al.  Tighter Bounds and Optimal Algorithms for All Maximal α-gapped Repeats and Palindromes , 2017, Theory of Computing Systems.

[14]  Gwénaël Richomme,et al.  Counting distinct palindromes in a word in linear time , 2010, Inf. Process. Lett..

[15]  Michael A. Bender,et al.  The LCA Problem Revisited , 2000, LATIN.

[16]  Glenn K. Manacher,et al.  A New Linear-Time ``On-Line'' Algorithm for Finding the Smallest Initial Palindrome of a String , 1975, JACM.

[17]  Ayumi Shinohara,et al.  Efficient algorithms to compute compressed longest common substrings and compressed palindromes , 2009, Theor. Comput. Sci..

[18]  Funda Ergün,et al.  Palindrome Recognition In The Streaming Model , 2013, STACS.

[19]  Eugene W. Myers,et al.  Suffix arrays: a new method for on-line string searches , 1993, SODA '90.

[20]  S. Muthukrishnan,et al.  On the sorting-complexity of suffix tree construction , 2000, JACM.

[21]  Solon P. Pissis,et al.  Longest Common Factor Made Fully Dynamic , 2018, ArXiv.