Numerical factorization of multivariate complex polynomials

One can consider the problem of factoring multivariate complex polynomials as a special case of the decomposition of a pure dimensional solution set of a polynomial system into irreducible components. The importance and nature of this problem however justify a special treatment. We exploit the reduction to the univariate root finding problem as a way to sample the polynomial more efficiently, certify the decomposition with linear traces, and apply interpolation techniques to construct the irreducible factors. With a random combination of differentials we lower multiplicities and reduce to the regular case. Estimates on the location of the zeroes of the derivative of polynomials provide bounds on the required precision. We apply our software to study the singularities of Stewart-Gough platforms.

[1]  David Rupprecht,et al.  Semi-numerical absolute factorization of polynomials with integer coefficients , 2004, J. Symb. Comput..

[2]  Andrew J. Sommese,et al.  Numerical Irreducible Decomposition Using PHCpack , 2003, Algebra, Geometry, and Software Systems.

[3]  W. Rogosinski,et al.  The Geometry of the Zeros of a Polynomial in a Complex Variable , 1950, The Mathematical Gazette.

[4]  Manfred Husty,et al.  Singularity Analysis of Spatial Stewart-Gough Platforms With Planar Base and Platform , 2002 .

[5]  Lihong Zhi,et al.  Pseudofactors of multivariate polynomials , 2000, ISSAC.

[6]  Jean-Pierre Merlet Singular Configurations of Parallel Manipulators and Grassmann Geometry , 1989, Int. J. Robotics Res..

[7]  Charles W. Wampler,et al.  Basic Numerical Algebraic Geometry , 2005 .

[8]  Jan Verschelde,et al.  Advances in Polynomial Continuation for Solving Problems in Kinematics , 2004 .

[9]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[10]  John F. Canny,et al.  Factoring Rational Polynomials Over the Complex Numbers , 1993, SIAM J. Comput..

[11]  Andrew J. Sommese Numerical Irreducible Decomposition using Projections from Points on the Components , 2001 .

[12]  Andrew J. Sommese,et al.  Symmetric Functions Applied to Decomposing Solution Sets of Polynomial Systems , 2002, SIAM J. Numer. Anal..

[13]  Stephen M. Watt,et al.  A geometric-numeric algorithm for factoring multivariate polynomials , 2002, International Symposium on Symbolic and Algebraic Computation.

[14]  Jean-Pierre Merlet,et al.  Parallel Robots , 2000 .

[15]  D. Trigiante,et al.  A globally convergent method for simultaneously finding polynomial roots , 1985 .

[16]  Stephen M. Watt,et al.  A geometric-numeric algorithm for absolute factorization of multivariate polynomials , 2002, ISSAC '02.

[17]  C. Ciliberto,et al.  Algebraic geometry : a volume in memory of Paolo Francia , 2002 .

[18]  Nobuki Takayama,et al.  Algebra,Geometry and Software Systems , 2003 .

[19]  Victor Y. Pan,et al.  Computation of Approximate Polynomial GCDs and an Extension , 2001, Inf. Comput..

[20]  Jean-Claude Yakoubsohn,et al.  Finding a Cluster of Zeros of Univariate Polynomials , 2000, J. Complex..

[21]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[22]  Jan Verschelde,et al.  Using Monodromy to Decompose Solution Sets of Polynomial Systems into Irreducible Components , 2001 .

[23]  Andrew J. Sommese,et al.  Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components , 2000, SIAM J. Numer. Anal..

[24]  Jan Verschelde,et al.  A Method for Tracking Singular Paths with Application to the Numerical Irreducible Decomposition , 2002 .

[25]  Erich Kaltofen,et al.  Challenges of Symbolic Computation: My Favorite Open Problems , 2000, J. Symb. Comput..

[26]  Jan Verschelde,et al.  Regeneration, local dimension, and applications in numerical algebraic geometry , 2009 .

[27]  Andrew J. Sommese,et al.  Numerical Homotopies to Compute Generic Points on Positive Dimensional Algebraic Sets , 2000, J. Complex..

[28]  Tateaki Sasaki,et al.  Approximate multivariate polynomial factorization based on zero-sum relations , 2001, ISSAC '01.

[29]  Erich Kaltofen,et al.  Computer algebra handbook , 2002 .

[30]  Boris Mayer St-Onge,et al.  Singularity Analysis and Representation of the General Gough-Stewart Platform , 2000, Int. J. Robotics Res..

[31]  Victor Y. Pan,et al.  Solving a Polynomial Equation: Some History and Recent Progress , 1997, SIAM Rev..

[32]  André Galligo,et al.  Irreducible Decomposition of Curves , 2002, J. Symb. Comput..

[33]  Mauro C. Beltrametti,et al.  A method for tracking singular paths with application to the numerical irreducible decomposition , 2002 .

[34]  Jan Verschelde,et al.  Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation , 1999, TOMS.

[35]  André Galligo,et al.  Semi-numerical determination of irreducible branches of a reduced space curve , 2001, ISSAC '01.

[36]  Stephen M. Watt,et al.  Towards factoring bivariate approximate polynomials , 2001, ISSAC '01.

[37]  S. Smale,et al.  The mathematics of numerical analysis : 1995 AMS-SIAM Summer Seminar in Applied Mathematics, July 17-August 11, 1995, Park City, Utah , 1996 .