Advances in the allostery of angiotensin II type 1 receptor

[1]  Xi-Ping Huang,et al.  Structural insights into angiotensin receptor signaling modulation by balanced and biased agonists , 2023, The EMBO journal.

[2]  Amanda E. Wakefield,et al.  Conservation of Allosteric Ligand Binding Sites in G-Protein Coupled Receptors , 2022, J. Chem. Inf. Model..

[3]  V. Casadó,et al.  Unmasking allosteric-binding sites: novel targets for GPCR drug discovery , 2022, Expert opinion on drug discovery.

[4]  M. Szczepek,et al.  Angiotensin and Endothelin Receptor Structures With Implications for Signaling Regulation and Pharmacological Targeting , 2022, Frontiers in Endocrinology.

[5]  A. Rodriguez-Perez,et al.  Angiotensin System Autoantibodies Correlate With Routine Prognostic Indicators for COVID-19 Severity , 2022, Frontiers in Medicine.

[6]  J. Silverberg,et al.  Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity , 2022, Nature Communications.

[7]  Suli Zhang,et al.  QR code model: a new possibility for GPCR phosphorylation recognition , 2022, Cell Communication and Signaling.

[8]  Jiaxi Xu,et al.  AT1 Receptors: Their Actions from Hypertension to Cognitive Impairment , 2022, Cardiovascular Toxicology.

[9]  Shaoyong Lu,et al.  Hidden allosteric sites and De-Novo drug design , 2021, Expert opinion on drug discovery.

[10]  J. Pin,et al.  Allosteric ligands control the activation of a class C GPCR heterodimer by acting at the transmembrane interface , 2021, eLife.

[11]  Chiara Angeletti,et al.  Anti-AT1R autoantibodies and prediction of the severity of Covid-19 , 2021, Human Immunology.

[12]  T. Harford,et al.  Novel allosteric ligands of the angiotensin receptor AT1R as autoantibody blockers , 2021, Proceedings of the National Academy of Sciences.

[13]  D. Guidolin,et al.  Receptor–Receptor Interactions and Glial Cell Functions with a Special Focus on G Protein-Coupled Receptors , 2021, International journal of molecular sciences.

[14]  Fergal J. Duffy,et al.  Angiotensin II receptor I auto-antibodies following SARS-CoV-2 infection , 2021, medRxiv.

[15]  Qing Liu,et al.  Molecular insights into ago-allosteric modulation of the human glucagon-like peptide-1 receptor , 2021, Nature Communications.

[16]  V. Cherezov,et al.  Structural insights into ligand recognition and activation of angiotensin receptors. , 2021, Trends in pharmacological sciences.

[17]  A. Bock,et al.  Allosteric coupling and biased agonism in G protein‐coupled receptors , 2021, The FEBS journal.

[18]  M. Caron,et al.  Biased Allosteric Modulators: New Frontiers in GPCR Drug Discovery. , 2021, Trends in pharmacological sciences.

[19]  F. Eitner,et al.  Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators , 2021, International journal of molecular sciences.

[20]  Tao Zhang,et al.  Cartilage oligomeric matrix protein is an endogenous β-arrestin-2-selective allosteric modulator of AT1 receptor counteracting vascular injury , 2021, Cell Research.

[21]  J. Jakubík,et al.  Allosteric Modulation of GPCRs of Class A by Cholesterol , 2021, International journal of molecular sciences.

[22]  K. Rosengren,et al.  Insights into the Interaction of LVV-Hemorphin-7 with Angiotensin II Type 1 Receptor , 2020, International journal of molecular sciences.

[23]  J. Giraldo,et al.  Dynamical Correlations Reveal Allosteric Sites in G Protein-Coupled Receptors , 2020, International journal of molecular sciences.

[24]  A. Kruse,et al.  Autoantibodies as Endogenous Modulators of GPCR Signaling. , 2020, Trends in pharmacological sciences.

[25]  D. Ni,et al.  Activation pathway of a G protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design , 2020, Nature Communications.

[26]  Y. Shiba,et al.  β-Arrestin–Biased AT1 Agonist TRV027 Causes a Neonatal-Specific Sustained Positive Inotropic Effect Without Increasing Heart Rate , 2020, JACC. Basic to translational science.

[27]  M. Ayoub,et al.  Interplay Between Angiotensin II Type 1 Receptor and Thrombin Receptor Revealed by Bioluminescence Resonance Energy Transfer Assay , 2020, Frontiers in Pharmacology.

[28]  Naomi R. Latorraca,et al.  Molecular mechanism of biased signaling in a prototypical G protein–coupled receptor , 2020, Science.

[29]  Naomi R. Latorraca,et al.  Angiotensin and biased analogs induce structurally distinct active conformations within a GPCR , 2020, Science.

[30]  G. Pei,et al.  Constitutive activity of a G protein‐coupled receptor, DRD1, contributes to human cerebral organoid formation , 2020, Stem cells.

[31]  M. Ayoub,et al.  Positive Modulation of Angiotensin II Type 1 Receptor–Mediated Signaling by LVV–Hemorphin-7 , 2019, Front. Pharmacol..

[32]  Ismail Erol,et al.  Towards Understanding the Impact of Dimerization Interfaces in Angiotensin II type 1 receptor (AT1R). , 2019, Journal of chemical information and modeling.

[33]  N. Fedarko,et al.  Antibodies against Angiotensin II Type 1 and Endothelin A Receptors: Relevance and pathogenicity. , 2019, Human immunology.

[34]  Jinghui Lei,et al.  Limited AT1 Receptor Internalization Is a Novel Mechanism Underlying Sustained Vasoconstriction Induced by AT1 Receptor Autoantibody From Preeclampsia , 2019, Journal of the American Heart Association.

[35]  Shaoyong Lu,et al.  Allosteric Modulator Discovery: From Serendipity to Structure-Based Design. , 2019, Journal of medicinal chemistry.

[36]  V. Gurevich,et al.  GPCR Signaling Regulation: The Role of GRKs and Arrestins , 2019, Front. Pharmacol..

[37]  U. Quitterer,et al.  Beta-Arrestin1 Prevents Preeclampsia by Downregulation of Mechanosensitive AT1-B2 Receptor Heteromers , 2019, Cell.

[38]  Khuraijam Dhanachandra Singh,et al.  Mechanism of Hormone Peptide Activation of a GPCR: Angiotensin II Activated State of AT1R Initiated by van der Waals Attraction , 2019, J. Chem. Inf. Model..

[39]  A. Kruse,et al.  Distinctive Activation Mechanism for Angiotensin Receptor Revealed by a Synthetic Nanobody , 2019, Cell.

[40]  G. Booz,et al.  Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. , 2018, Physiological reviews.

[41]  P. Sexton,et al.  Structural insights into G-protein-coupled receptor allostery , 2018, Nature.

[42]  Anthony Watts,et al.  Dynamic tuneable G protein-coupled receptor monomer-dimer populations , 2018, Nature Communications.

[43]  Shaoyong Lu,et al.  Small Molecule Allosteric Modulators of G-Protein-Coupled Receptors: Drug-Target Interactions. , 2018, Journal of medicinal chemistry.

[44]  Yi Fu,et al.  Homocysteine directly interacts and activates the angiotensin II type I receptor to aggravate vascular injury , 2018, Nature Communications.

[45]  David E. Gloriam,et al.  Trends in GPCR drug discovery: new agents, targets and indications , 2017, Nature Reviews Drug Discovery.

[46]  Alex C. Conner,et al.  Understanding the common themes and diverse roles of the second extracellular loop (ECL2) of the GPCR super-family , 2017, Molecular and Cellular Endocrinology.

[47]  F. Ciruela,et al.  Angiotensin II type 1/adenosine A2A receptor oligomers: a novel target for tardive dyskinesia , 2017, Scientific Reports.

[48]  B. Farran An update on the physiological and therapeutic relevance of GPCR oligomers , 2017, Pharmacological research.

[49]  D. Bennett,et al.  Discovery and Validation of Agonistic Angiotensin Receptor Autoantibodies as Biomarkers of Adverse Outcomes , 2017, Circulation.

[50]  D. Dupré,et al.  Differential Contribution of Transmembrane Domains IV, V, VI, and VII to Human Angiotensin II Type 1 Receptor Homomer Formation* , 2017, The Journal of Biological Chemistry.

[51]  Yanzhi Guo,et al.  Exploring the mechanism of F282L mutation-caused constitutive activity of GPCR by a computational study. , 2016, Physical chemistry chemical physics : PCCP.

[52]  H. Biebermann,et al.  Oligomerization of GPCRs involved in endocrine regulation. , 2016, Journal of molecular endocrinology.

[53]  A. Nanbo,et al.  Attenuation of ligand-induced activation of angiotensin II type 1 receptor signaling by the type 2 receptor via protein kinase C , 2016, Scientific Reports.

[54]  Zhu Jin,et al.  Mechanism of agonistic angiotensin II type I receptor autoantibody-amplified contractile response to Ang II in the isolated rat thoracic aorta. , 2015, Acta biochimica et biophysica Sinica.

[55]  Y. Liu,et al.  Biased signalling: the instinctive skill of the cell in the selection of appropriate signalling pathways. , 2015, The Biochemical journal.

[56]  Rodney L. Nyland,et al.  Type II Hypersensitivity Reaction , 2015 .

[57]  J. Ge,et al.  Identification of Amino Acid Residues in Angiotensin II Type 1 Receptor Sensing Mechanical Stretch and Function in Cardiomyocyte Hypertrophy , 2015, Cellular Physiology and Biochemistry.

[58]  J. Lanciego,et al.  Dopamine D2 and angiotensin II type 1 receptors form functional heteromers in rat striatum. , 2015, Biochemical pharmacology.

[59]  J. Violin,et al.  Cardiac myosin light chain phosphorylation and inotropic effects of a biased ligand, TRV120023, in a dilated cardiomyopathy model. , 2015, Cardiovascular research.

[60]  Michelle A. O’Malley,et al.  Structure and function of G protein-coupled receptor oligomers: implications for drug discovery , 2014 .

[61]  Céline Galés,et al.  Dual agonist occupancy of AT1-R-α2C-AR heterodimers results in atypical Gs-PKA signaling. , 2015, Nature chemical biology.

[62]  Y. Liao,et al.  Agonistic autoantibodies against the angiotensin AT1 receptor increase in unstable angina patients after stent implantation , 2014, Coronary artery disease.

[63]  Ryan T. Strachan,et al.  Allosteric Modulation of β-Arrestin-biased Angiotensin II Type 1 Receptor Signaling by Membrane Stretch* , 2014, The Journal of Biological Chemistry.

[64]  S. Laporte,et al.  Allosteric and Biased G Protein-Coupled Receptor Signaling Regulation: Potentials for New Therapeutics , 2014, Front. Endocrinol..

[65]  G. Wallukat,et al.  Endothelin-1, Oxidative Stress, and Endogenous Angiotensin II: Mechanisms of Angiotensin II Type I Receptor Autoantibody–Enhanced Renal and Blood Pressure Response During Pregnancy , 2013, Hypertension.

[66]  C. Haisch,et al.  Higher Risk of Kidney Graft Failure in the Presence of Anti‐Angiotensin II Type‐1 Receptor Antibodies , 2013, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[67]  Arthur Christopoulos,et al.  Emerging paradigms in GPCR allostery: implications for drug discovery , 2013, Nature Reviews Drug Discovery.

[68]  L. May,et al.  The apelin receptor inhibits the angiotensin II type 1 receptor via allosteric trans‐inhibition , 2013, British journal of pharmacology.

[69]  T. Hébert,et al.  GPCR heterodimers: asymmetries in ligand binding and signalling output offer new targets for drug discovery , 2013, British journal of pharmacology.

[70]  R. Leduc,et al.  Structure of the Human Angiotensin II Type 1 (AT1) Receptor Bound to Angiotensin II from Multiple Chemoselective Photoprobe Contacts Reveals a Unique Peptide Binding Mode* , 2013, The Journal of Biological Chemistry.

[71]  L. Hunyady,et al.  Allosteric interactions within the AT₁ angiotensin receptor homodimer: role of the conserved DRY motif. , 2012, Biochemical pharmacology.

[72]  J. L. Hansen,et al.  Functionally Selective AT1 Receptor Activation Reduces Ischemia Reperfusion Injury , 2012, Cellular Physiology and Biochemistry.

[73]  W. Lau,et al.  Increased susceptibility to metabolic syndrome in adult offspring of angiotensin type 1 receptor autoantibody-positive rats. , 2012, Antioxidants & redox signaling.

[74]  L. Scott,et al.  Binding of losartan to angiotensin AT1 receptors increases dopamine D1 receptor activation. , 2012, Journal of the American Society of Nephrology : JASN.

[75]  T. Kenakin Biased signalling and allosteric machines: new vistas and challenges for drug discovery , 2012, British journal of pharmacology.

[76]  J. Violin,et al.  Cardiorenal Actions of TRV120027, a Novel ß-Arrestin–Biased Ligand at the Angiotensin II Type I Receptor, in Healthy and Heart Failure Canines: A Novel Therapeutic Strategy for Acute Heart Failure , 2011, Circulation. Heart failure.

[77]  G. Wallukat,et al.  Angiotensin II Type 1 Receptor Antibodies and Increased Angiotensin II Sensitivity in Pregnant Rats , 2011, Hypertension.

[78]  Graeme Milligan,et al.  Allostery at G Protein-Coupled Receptor Homo- and Heteromers: Uncharted Pharmacological Landscapes , 2010, Pharmacological Reviews.

[79]  Lisa Nguyen,et al.  Selectively Engaging β-Arrestins at the Angiotensin II Type 1 Receptor Reduces Blood Pressure and Increases Cardiac Performance , 2010, Journal of Pharmacology and Experimental Therapeutics.

[80]  S. Gammeltoft,et al.  Biased Signaling of the Angiotensin II Type 1 Receptor Can Be Mediated through Distinct Mechanisms , 2010, PloS one.

[81]  T. Kenakin G protein coupled receptors as allosteric proteins and the role of allosteric modulators , 2010, Journal of receptor and signal transduction research.

[82]  K. Rakesh,et al.  β-Arrestin–Biased Agonism of the Angiotensin Receptor Induced by Mechanical Stress , 2010, Science Signaling.

[83]  P. López-Sánchez,et al.  Angiotensin-II type 1 receptor (AT1R) and alpha-1D adrenoceptor form a heterodimer during pregnancy-induced hypertension. , 2010, Autonomic & autacoid pharmacology.

[84]  G. Vinson,et al.  Changes in angiotensin II type 1 receptor signalling pathways evoked by a monoclonal antibody raised to the N-terminus. , 2008, The Journal of endocrinology.

[85]  J. Violin,et al.  β-Arrestin-biased ligands at seven-transmembrane receptors , 2007 .

[86]  J. Violin,et al.  β-Arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes , 2006, Proceedings of the National Academy of Sciences.

[87]  R. Lefkowitz,et al.  Angiotensin II–Stimulated Signaling Through G Proteins and β-Arrestin , 2005, Science's STKE.

[88]  P. Sexton,et al.  G-Protein–Coupled Receptor Mas Is a Physiological Antagonist of the Angiotensin II Type 1 Receptor , 2005, Circulation.

[89]  J. L. Hansen,et al.  Oligomerization of Wild Type and Nonfunctional Mutant Angiotensin II Type I Receptors Inhibits Gαq Protein Signaling but Not ERK Activation* , 2004, Journal of Biological Chemistry.

[90]  H. Rockman,et al.  Dual Inhibition of &bgr;-Adrenergic and Angiotensin II Receptors by a Single Antagonist: A Functional Role for Receptor–Receptor Interaction In Vivo , 2003, Circulation.

[91]  L. Hunyady,et al.  Independent β-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[92]  F. Mendelsohn,et al.  Angiotensin receptors: form and function and distribution. , 2003, The international journal of biochemistry & cell biology.

[93]  David A. Calhoun,et al.  Drugs targeting the renin–angiotensin–aldosterone system , 2002, Nature Reviews Drug Discovery.

[94]  M. Lew,et al.  Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. , 2002, Molecular pharmacology.

[95]  H. Lother,et al.  The Angiotensin II AT2 Receptor Is an AT1Receptor Antagonist* , 2001, The Journal of Biological Chemistry.

[96]  H. Lother,et al.  AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration , 2000, Nature.

[97]  G. Wallukat,et al.  Autoantibodies against the angiotensin receptor (AT1) in patients with hypertension , 2000, Journal of hypertension.

[98]  G. Wallukat,et al.  Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. , 1999, The Journal of clinical investigation.

[99]  Robert J. Lefkowitz,et al.  G Protein-coupled Receptors , 1998, The Journal of Biological Chemistry.

[100]  Shaoyong Lu,et al.  Characteristics of Allosteric Proteins, Sites, and Modulators. , 2019, Advances in experimental medicine and biology.

[101]  G. Liapakis,et al.  Effects of Cholesterol on GPCR Function: Insights from Computational and Experimental Studies. , 2019, Advances in experimental medicine and biology.

[102]  T. Hébert,et al.  The Dynamics of GPCR Oligomerization and Their Functional Consequences. , 2018, International review of cell and molecular biology.

[103]  B. Winblad,et al.  Autoantibodies Toward the Angiotensin 2 Type 1 Receptor: A Novel Autoantibody in Alzheimer's Disease. , 2015, Journal of Alzheimer's disease : JAD.

[104]  S. Karnik,et al.  Constitutive activity in the angiotensin II type 1 receptor: discovery and applications. , 2014, Advances in pharmacology.

[105]  J. Violin,et al.  Beta-arrestin-biased ligands at seven-transmembrane receptors. , 2007, Trends in pharmacological sciences.

[106]  Arthur Christopoulos,et al.  Allosteric modulation of G protein-coupled receptors. , 2007, Annual review of pharmacology and toxicology.

[107]  L. Hunyady,et al.  Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[108]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..