New Shrinkage Parameters for the Liu-type Logistic Estimators

The binary logistic regression is a widely used statistical method when the dependent variable has two categories. In most of the situations of logistic regression, independent variables are collinear which is called the multicollinearity problem. It is known that multicollinearity affects the variance of maximum likelihood estimator (MLE) negatively. Therefore, this article introduces new shrinkage parameters for the Liu-type estimators in the Liu (2003) in the logistic regression model defined by Huang (2012) in order to decrease the variance and overcome the problem of multicollinearity. A Monte Carlo study is designed to show the goodness of the proposed estimators over MLE in the sense of mean squared error (MSE) and mean absolute error (MAE). Moreover, a real data case is given to demonstrate the advantages of the new shrinkage parameters.

[1]  G. Shukur,et al.  On Ridge Parameters in Logistic Regression , 2011 .

[2]  Ghazi Shukur,et al.  Some Modifications for Choosing Ridge Parameters , 2006 .

[3]  Liu Kejian,et al.  A new class of blased estimate in linear regression , 1993 .

[4]  J. Neyman,et al.  INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .

[5]  Joseph P. Newhouse,et al.  An Evaluation of Ridge Estimators , 1971 .

[6]  D. Berry,et al.  Statistics: Theory and Methods , 1990 .

[7]  B. M. Golam Kibria,et al.  Performance of Some Logistic Ridge Regression Estimators , 2012 .

[8]  B. M. Kibria,et al.  Performance of Some New Ridge Regression Estimators , 2003 .

[9]  Wei Liu Simultaneous prediction intervals for all distances from the “best” , 1993 .

[10]  Kejian Liu Using Liu-Type Estimator to Combat Collinearity , 2003 .

[11]  A. Genç,et al.  Modified ridge regression parameters: A comparative Monte Carlo study , 2014 .

[12]  G. Shukur,et al.  On Liu Estimators for the Logit Regression Model , 2012 .

[13]  Kristofer Månsson,et al.  On Developing Ridge Regression Parameters: A Graphical investigation , 2012 .

[14]  B. M. Golam Kibria,et al.  Please Scroll down for Article Communications in Statistics -simulation and Computation on Some Ridge Regression Estimators: an Empirical Comparisons on Some Ridge Regression Estimators: an Empirical Comparisons , 2022 .

[15]  R. Schaefer,et al.  A ridge logistic estimator , 1984 .

[16]  G. Khalaf,et al.  Choosing Ridge Parameter for Regression Problems , 2005 .

[17]  Jiewu Huang,et al.  A Simulation Research on a Biased Estimator in Logistic Regression Model , 2012, ISICA.

[18]  Kristofer Månsson,et al.  On Some Ridge Regression Estimators: A Monte Carlo Simulation Study Under Different Error Variances , 2010 .

[19]  Deniz Inan,et al.  Liu-Type Logistic Estimator , 2013, Commun. Stat. Simul. Comput..

[20]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[21]  M. A. Alkhamisi,et al.  A Monte Carlo Study of Recent Ridge Parameters , 2007, Commun. Stat. Simul. Comput..