An analysis of the composite step biconjugate gradient method

SummaryThe composite step biconjugate gradient method (CSBCG) is a simple modification of the standard biconjugate gradient algorithm (BCG) which smooths the sometimes erratic convergence of BCG by computing only a subset of the iterates. We show that 2×2 composite steps can cure breakdowns in the biconjugate gradient method caused by (near) singularity of principal submatrices of the tridiagonal matrix generated by the underlying Lanczos process. We also prove a “best approximation” result for the method. Some numerical illustrations showing the effect of roundoff error are given.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[3]  J. Bunch Partial Pivoting Strategies for Symmetric Matrices , 1972 .

[4]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[5]  T. Manteuffel An Iterative Method for Solving Nonsymmetric Linear Systems With Dynamic Estimation of Parameters , 1975 .

[6]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[7]  T. Manteuffel The Tchebychev iteration for nonsymmetric linear systems , 1977 .

[8]  Alan George,et al.  Computer Solution of Large Sparse Positive Definite , 1981 .

[9]  Y. Saad The Lanczos Biorthogonalization Algorithm and Other Oblique Projection Methods for Solving Large Unsymmetric Systems , 1982 .

[10]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[11]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[12]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[13]  R. K. Smith,et al.  Some upwinding techniques for finite element approximations of convection-diffusion equations , 1990 .

[14]  N. Nachtigal A look-ahead variant of the Lanczos algorithm and its application to the quasi-minimal residual method for non-Hermitian linear systems. Ph.D. Thesis - Massachusetts Inst. of Technology, Aug. 1991 , 1991 .

[15]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[16]  C. Brezinski,et al.  A breakdown-free Lanczos type algorithm for solving linear systems , 1992 .

[17]  Martin H. Gutknecht,et al.  A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms, Part I , 1992, SIAM J. Matrix Anal. Appl..

[18]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[19]  Beresford N. Parlett,et al.  Reduction to Tridiagonal Form and Minimal Realizations , 1992, SIAM J. Matrix Anal. Appl..

[20]  Wayne Joubert,et al.  Lanczos Methods for the Solution of Nonsymmetric Systems of Linear Equations , 1992, SIAM J. Matrix Anal. Appl..

[21]  G. Golub,et al.  Iterative solution of linear systems , 1991, Acta Numerica.

[22]  Claude Brezinski,et al.  Lanczos-type algorithms for solving systems of linear equations , 1993 .

[23]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[24]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[25]  M. Gutknecht A Completed Theory of the Unsymmetric Lanczos Process and Related Algorithms. Part II , 1994, SIAM J. Matrix Anal. Appl..