The Evaluation of the Heat Loading from Steady, Transient and Off-Normal Conditions in ARIES Power Plants

Abstract The heat loading on plasma facing components (PFCs) provides a critical limitation for design and operation of the first wall, divertor, and other special components. Power plants will have high power entering the scrape-off layer and transporting to the first wall and divertor. Although the engineering design for steady heat loads is understood, characterizing the steady heat load and the approach for transient and off-normal loading is not. The characterization of heat loads developed for ITER can be applied to power plants to better develop the operating space of viable solutions and point to research focus areas.

[1]  S. Malang,et al.  ARIES-ACT1 Power Core Engineering , 2013 .

[2]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[3]  Andreas Bürger,et al.  Evolution of tungsten degradation under combined high cycle edge-localized mode and steady-state heat loads , 2011 .

[4]  P. D. Morgan,et al.  Disruption mitigation by massive gas injection in JET , 2011 .

[5]  T. Eich,et al.  Inter-ELM power decay length for JET and ASDEX upgrade: measurement and comparison with heuristic drift-based model. , 2011, Physical review letters.

[6]  G. Saibene,et al.  Power load characterization for type-I ELMy H-modes in JET , 2011 .

[7]  Jet Efda Contributors,et al.  Multi-parameter scaling of divertor power load profiles in D, H and He plasmas on JET and implications for ITER , 2011 .

[8]  A. Kukushkin,et al.  Physics basis and design of the ITER plasma-facing components , 2011 .

[9]  W. Fundamenski,et al.  Type-I ELM power deposition profile width and temporal shape in JET , 2011 .

[10]  J. Contributors,et al.  Heat load measurements on the JET first wall during disruptions , 2011 .

[11]  M. Tillack,et al.  Innovative First Wall Concept Providing Additional Armor at High Heat Flux Regions , 2011 .

[12]  J. R. Martin-Solis,et al.  Magnetic energy flows during the current quench and termination of disruptions with runaway current plateau formation in JET and implications for ITER , 2011 .

[13]  Ronald Wenninger,et al.  ELM pacing investigations at JET with the new pellet launcher , 2011 .

[14]  Robert J. Goldston,et al.  Heuristic drift-based model of the power scrape-off width in low-gas-puff H-mode tokamaks , 2011 .

[15]  V. I. Tereshin,et al.  The latest results from ELM-simulation experiments in plasma accelerators , 2009 .

[16]  T. Jernigan,et al.  Disruption mitigation on Alcator C-Mod using high-pressure gas injection: Experiments and modeling toward ITER , 2007 .

[17]  K. Ikeda Progress in the ITER Physics Basis , 2007 .

[18]  J. Manickam,et al.  Chapter 3: MHD stability, operational limits and disruptions , 2007 .

[19]  M. Sugihara,et al.  Disruption scenarios, their mitigation and operation window in ITER , 2007 .

[20]  W. Fundamenski,et al.  Transient heat loads in current fusion experiments, extrapolation to ITER and consequences for its operation , 2007 .

[21]  J. Stober,et al.  Pedestal conditions for small ELM regimes in tokamaks , 2006 .

[22]  Mark S. Tillack,et al.  Advanced power core system for the ARIES-AT power plant , 2006 .

[23]  A. Loarte,et al.  Timescale and magnitude of plasma thermal energy loss before and during disruptions in JET , 2005 .

[24]  D. A. Humphreys,et al.  Gas jet disruption mitigation studies on Alcator C-Mod , 2005 .

[25]  W. Fundamenski,et al.  ELM-averaged power exhaust on JET , 2005 .

[26]  G. Pautasso,et al.  Power deposition onto plasma facing components in poloidal divertor tokamaks during type-I ELMs and disruptions , 2005 .

[27]  J. Paley,et al.  Energy flow during disruptions in JET , 2005 .

[28]  T. Osborne,et al.  Characterization of peeling-ballooning stability limits on the pedestal , 2004 .

[29]  V. Parail,et al.  Characterization of pedestal parameters and edge localized mode energy losses in the Joint European Torus and predictions for the International Thermonuclear Experimental Reactor , 2004 .

[30]  Brad J. Merrill,et al.  A fusion reactor design with a liquid first wall and divertor , 2003 .

[31]  M. Sugihara,et al.  LETTER TO THE EDITOR: Scaling of H-mode edge pedestal pressure for a Type-I ELM regime in tokamaks , 2003 .

[32]  J. Contributors,et al.  Steady State and Transient Power Handling in JET , 2003 .

[33]  M. Sugihara,et al.  Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER , 2003 .

[34]  A. Loarte,et al.  Assessment of erosion of the ITER divertor targets during type I ELMs , 2003 .

[35]  Julien Fuchs,et al.  Energy and particle losses during type-I ELMy H-mode in ASDEX Upgrade , 2003 .

[36]  A. Bergmann,et al.  Stationary and Transient Divertor Heat Flux Profiles and Extrapolation to ITER , 2003 .

[37]  Laila A. El-Guebaly,et al.  ARIES-ST nuclear analysis and shield design , 2003 .

[38]  M. Rensink,et al.  Edge-plasma models and characteristics for magnetic fusion energy devices , 2002 .

[39]  Mark S. Tillack,et al.  ARIES-RS divertor system selection and analysis , 1997 .

[40]  M. Rosenbluth,et al.  Theory for avalanche of runaway electrons in tokamaks , 1997 .