Application of arrangement theory to unfolding models

Arrangement theory plays an essential role in the study of the unfolding model used in many fields. This paper describes how arrangement theory can be usefully employed in solving the problems of counting (i) the number of admissible rankings in an unfolding model and (ii) the number of ranking patterns generated by unfolding models. The paper is mostly expository but also contains some new results such as simple upper and lower bounds for the number of ranking patterns in the unidimensional case.

[1]  C H COOMBS,et al.  Psychological scaling without a unit of measurement. , 1950, Psychological review.

[2]  R. Thrall,et al.  A combinatorial problem. , 1952 .

[3]  G. Rota,et al.  On The Foundations of Combinatorial Theory: Combinatorial Geometries , 1970 .

[4]  T. Zaslavsky Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .

[5]  I. J. Good,et al.  Stirling Numbers and a Geometric Structure from Voting Theory , 1977, J. Comb. Theory A.

[6]  Donna L. Hoffman,et al.  Constructing MDS Joint Spaces from Binary Choice Data: A Multidimensional Unfolding Threshold Model for Marketing Research , 1987 .

[7]  David Andrich,et al.  The Application of an Unfolding Model of the PIRT Type to the Measurement of Attitude , 1988 .

[8]  P. Couturier Japan , 1988, The Lancet.

[9]  Karl Christoph Klauer,et al.  New developments in psychological choice modeling , 1989 .

[10]  David Andrich,et al.  A Probabilistic IRT Model for Unfolding Preference Data , 1989 .

[11]  P. Orlik,et al.  Arrangements Of Hyperplanes , 1992 .

[12]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[13]  Christos A. Athanasiadis,et al.  Algebraic combinatorics of graph spectra, subspace arrangements and Tutte polynomials , 1996 .

[14]  Christos A. Athanasiadis Characteristic Polynomials of Subspace Arrangements and Finite Fields , 1996 .

[15]  Akimichi Takemura,et al.  On Rankings Generated by Pairwise Linear Discriminant Analysis ofmPopulations , 1997 .

[16]  Jirí Matousek,et al.  Invitation to discrete mathematics , 1998 .

[17]  Thomas Zaslavsky,et al.  Perpendicular Dissections of Space , 2010, Discret. Comput. Geom..

[18]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[19]  I. Bárány LECTURES ON DISCRETE GEOMETRY (Graduate Texts in Mathematics 212) , 2003 .

[20]  紙屋 英彦,et al.  Characterization of Rankings Generated by Linear Discriminant Analysis , 2003 .

[21]  Joshua D. Clinton,et al.  The Statistical Analysis of Roll Call Data , 2004, American Political Science Review.

[22]  J. Leeuw,et al.  MULTIDIMENSIONAL SCALING AND UNFOLDING , 2005 .

[23]  Akimichi Takemura,et al.  Characterization of rankings generated by linear discriminant anlaysis , 2005 .

[24]  Richard P. Stanley Ordering events in Minkowski space , 2006, Adv. Appl. Math..

[25]  Akimichi Takemura,et al.  Arrangements and Ranking Patterns , 2006 .

[26]  R. Stanley An Introduction to Hyperplane Arrangements , 2007 .

[27]  Akimichi Takemura,et al.  Periodicity of hyperplane arrangements with integral coefficients modulo positive integers , 2007, math/0703904.

[28]  Akimichi Takemura,et al.  Periodicity of Non-Central Integral Arrangements Modulo Positive Integers , 2008 .

[29]  Akimichi Takemura,et al.  Ranking patterns of unfolding models of codimension one , 2010, Adv. Appl. Math..