Efficient Structured Multifrontal Factorization for General Large Sparse Matrices

Rank structures provide an opportunity to develop new efficient numerical methods for practical problems, when the off-diagonal blocks of certain dense intermediate matrices have small (numerical) ranks. In this work, we present a framework of structured direct factorizations for general sparse matrices, including discretized PDEs on general meshes, based on the multifrontal method and hierarchically semiseparable (HSS) matrices. We prove the idea of replacing certain complex structured operations by fast simple ones performed on compact reduced matrix forms. Such forms result from the hierarchical factorization of a tree-structured HSS matrix in a ULV-type scheme, so that the tree structure is reduced into a single node, the root of the original tree. This idea is shown to be very useful in the partial ULV factorization of an HSS matrix (for quickly computing Schur complements) as well as the solution stage. These techniques are then built into the multifrontal method for sparse factorizations after nest...

[1]  Joseph W. H. Liu,et al.  The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..

[2]  I. Gohberg,et al.  On a new class of structured matrices , 1999 .

[3]  Mario Bebendorf,et al.  Mathematik in den Naturwissenschaften Leipzig Existence of H-Matrix Approximants to the Inverse FE-Matrix of Elliptic Operators with L ∞-Coefficients , 2003 .

[4]  Ronald Kriemann,et al.  Parallel Black Box Domain Decomposition Based H-LU Preconditioning , 2005 .

[5]  Alle-Jan van der Veen,et al.  Some Fast Algorithms for Sequentially Semiseparable Representations , 2005, SIAM J. Matrix Anal. Appl..

[6]  G. Golub,et al.  A bibliography on semiseparable matrices* , 2005 .

[7]  S. Börm Efficient Numerical Methods for Non-local Operators , 2010 .

[8]  F. Harary A graph theoretic approach to matrix inversion by partitioning , 1962 .

[9]  Lexing Ying,et al.  A fast direct solver for elliptic problems on general meshes in 2D , 2012, J. Comput. Phys..

[10]  Jianlin Xia,et al.  Efficient scalable algorithms for hierarchically semiseparable matrices , 2011 .

[11]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[12]  Xiaoye S. Li,et al.  SuperLU Users'' Guide , 1997 .

[13]  Shivkumar Chandrasekaran,et al.  A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..

[14]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[15]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[16]  Cornelis Vuik,et al.  A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems , 2005, SIAM J. Sci. Comput..

[17]  Michael Griebel,et al.  An Algebraic Multigrid Method for Linear Elasticity , 2003, SIAM J. Sci. Comput..

[18]  V. Rokhlin,et al.  A fast direct solver for boundary integral equations in two dimensions , 2003 .

[19]  Steffen Börm,et al.  Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.

[20]  Reginald P. Tewarson,et al.  The product form of inverses of sparse matrices and graph theory. , 1967 .

[21]  Jianlin Xia,et al.  Robust and Efficient Multifrontal Solver for Large Discretized PDEs , 2012, High-Performance Scientific Computing.

[22]  S. Parter The Use of Linear Graphs in Gauss Elimination , 1961 .

[23]  Jianlin Xia,et al.  Acoustic inverse scattering via Helmholtz operator factorization and optimization , 2010, J. Comput. Phys..

[24]  D. Rose,et al.  Complexity Bounds for Regular Finite Difference and Finite Element Grids , 1973 .

[25]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[26]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[27]  L. Grasedyck,et al.  Domain-decomposition Based ℌ-LU Preconditioners , 2007 .

[28]  Xiaoye S. Li,et al.  Direction-Preserving and Schur-Monotonic Semiseparable Approximations of Symmetric Positive Definite Matrices , 2009, SIAM J. Matrix Anal. Appl..

[29]  Israel Gohberg,et al.  Computations with quasiseparable polynomials and matrices , 2008, Theor. Comput. Sci..

[30]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[31]  O. Widlund,et al.  Domain Decomposition Methods in Science and Engineering XVI , 2007 .

[32]  Jianlin Xia A robust inner-outer HSS preconditioner , 2011 .

[33]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[34]  Héctor D. Ceniceros,et al.  Fast algorithms with applications to pdes , 2005 .

[35]  Shivkumar Chandrasekaran,et al.  A Fast Solver for HSS Representations via Sparse Matrices , 2006, SIAM J. Matrix Anal. Appl..

[36]  Shivkumar Chandrasekaran,et al.  On the Numerical Rank of the Off-Diagonal Blocks of Schur Complements of Discretized Elliptic PDEs , 2010, SIAM J. Matrix Anal. Appl..

[37]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[38]  Jianlin Xia,et al.  Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..

[39]  Jianlin Xia,et al.  On the Complexity of Some Hierarchical Structured Matrix Algorithms , 2012, SIAM J. Matrix Anal. Appl..

[40]  Per-Gunnar Martinsson,et al.  A Fast Direct Solver for a Class of Elliptic Partial Differential Equations , 2009, J. Sci. Comput..