A quasiclassical trajectory study of the reaction OH+CO→H+CO2

A new, full-dimensional potential energy surface has been constructed to describe the OH+CO↔H+CO2 reactive system. The new surface modifies the existing many body expansion potential of Bradley and Schatz based on recent ab initio calculations and incorporates an entirely new hybrid surface to accurately describe the OH+CO entrance channel and two possible van der Waals complexes, OH–CO and OH–OC. Quasiclassical trajectory calculations have been performed for the reaction OH+CO→H+CO2 using the new surface in order to examine the impact of the changes in the surface, to evaluate the accuracy of the surface by comparing to experimental results, and to investigate the reaction dynamics of this interesting complex-forming system. It is shown that the improvement in the description of the entrance channel has a rather large effect on overall reactivity and response to reagent rotational and vibrational excitation, but has little effect on various product properties such as angular and translational energy dist...

[1]  Rosendo Valero,et al.  Theoretical rate constants for the OH+CO→H+CO2 reaction using variational transition state theory on analytical potential energy surfaces , 2002 .

[2]  G. Schatz,et al.  Quasiclassical Trajectory Study of Energy and Angular Distributions for the H + CO2 → OH + CO Reaction† , 2002 .

[3]  Ian W. M. Smith,et al.  Role of Hydrogen-Bonded Intermediates in the Bimolecular Reactions of the Hydroxyl Radical , 2002 .

[4]  Trevor J. Sears,et al.  A theoretical study of the potential energy surface for the reaction OH+CO→H+CO2 , 2001 .

[5]  E. Diau,et al.  A computational study of the OH(OD) + CO reactions: Effects of pressure, temperature, and quantum-mechanical tunneling on product formation , 2001 .

[6]  J. J. Meulen,et al.  The effect of molecular orientation in collisions of OH with CO and N2 , 2001 .

[7]  A. Wagner,et al.  Mapping the OH + CO-->HOCO reaction pathway through IR spectroscopy of the OH-CO reactant complex. , 2001, Faraday discussions.

[8]  David T. Anderson,et al.  Exploring the OH+CO reaction coordinate via infrared spectroscopy of the OH–CO reactant complex , 2000 .

[9]  T. V. Duncan,et al.  The HCO2 potential energy surface: Stationary point energetics and the HOCO heat of formation , 2000 .

[10]  Bian,et al.  van der waals interactions in the Cl + HD reaction , 1999, Science.

[11]  Michael Frenklach,et al.  OH(OD) + CO: Measurements and an Optimized RRKM Fit , 1998 .

[12]  Joel M. Bowman,et al.  SPECTATOR MODES IN RESONANCE-DRIVEN REACTIONS : THREE-DIMENSIONAL QUANTUM CALCULATIONS OF HOCO RESONANCES , 1998 .

[13]  Donald L Thompson,et al.  Modern Methods for Multidimensional Dynamics Computations in Chemistry , 1998 .

[14]  G. Schatz,et al.  A quasiclassical trajectory study of H+CO2: Angular and translational distributions, and OH angular momentum alignment , 1997 .

[15]  H. Hamann,et al.  High pressure range of addition reactions of HO. II. Temperature and pressure dependence of the reaction HO+CO⇔HOCO→H+CO2 , 1996 .

[16]  N. Balakrishnan,et al.  A QUANTUM-CLASSICAL STUDY OF THE REACTION CO(V1,J1)+OH(V2,J2)CO2+H , 1996 .

[17]  Kopin Liu,et al.  The Chemical Dynamics and Kinetics of Small Radicals: Part 1 , 1996 .

[18]  D. Schwenke,et al.  A fast Fourier transform method for the quasiclassical selection of initial rovibrational states of triatomic molecules , 1995 .

[19]  John Z. H. Zhang,et al.  Quantum calculations of reaction probabilities for HO + CO→ H + CO2 and bound states of HOCO , 1995 .

[20]  George C. Schatz,et al.  Quantum dynamics of a planar model for the complex forming OH+CO→H+CO2 reaction , 1995 .

[21]  G. Schatz Quasiclassical trajectory studies of state-resolved bimolecular reactions. Vibrational distributions in triatomic products , 1995 .

[22]  G. Schatz,et al.  Theoretical studies of polyatomic bimolecular reaction dynamics. , 1995, Annual review of physical chemistry.

[23]  Ian W. M. Smith,et al.  Reaction between hydroxyl (deuteroxyl) radicals and carbon monoxide at temperatures down to 80 K: experiment and theory , 1993 .

[24]  C. Wittig,et al.  Subpicosecond resolution studies of the H+CO2→CO+OH reaction photoinitiated in CO2–HI complexes , 1993 .

[25]  Richard G. Compton,et al.  Research in Chemical Kinetics , 1993 .

[26]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[27]  George C. Schatz,et al.  Quantum and quasiclassical calculations on the OH+CO→CO2+H reaction , 1993 .

[28]  Nadia Balucani,et al.  Crossed beam studies of four‐atom reactions: The dynamics of OH+CO , 1993 .

[29]  G. Schatz,et al.  A quasiclassical trajectory study of OH rotational excitation in OH+CO collisions using ab initio potential surfaces , 1992 .

[30]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[31]  G. Schatz,et al.  A quasiclassical trajectory study of the OH+CO reaction , 1991 .

[32]  R. Macdonald,et al.  A crossed‐beam study of the state‐resolved integral cross sections for the inelastic scattering of OH(X 2Π) with CO and N2 , 1991 .

[33]  Ian W. M. Smith,et al.  Energy and structure of the transition states in the reaction OH + CO → H + CO2 , 1991 .

[34]  Robert J. Kee,et al.  Chemical Kinetics and Combustion Modeling , 1990 .

[35]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[36]  G. Schatz A program for determining primitive semiclassical eigenvalues for vibrating/rotating nonlinear triatomic molecules , 1988 .

[37]  Ian W. M. Smith,et al.  Kinetics of OH(v= 0, 1) and OD(v= 0, 1) with CO and the mechanism of the OH + CO reaction , 1988 .

[38]  A. Zewail,et al.  Real‐time picosecond clocking of the collision complex in a bimolecular reaction: The birth of OH from H+CO2 , 1987 .

[39]  Lawrence B. Harding,et al.  State-to-state chemistry with fast hydrogen atoms. Reaction and collisional excitation in H + CO2 , 1987 .

[40]  G. Schatz,et al.  A quasiclassical trajectory study of vibrational predissociation and collisional relaxation in Ar–OCS , 1985 .

[41]  J. Murrell,et al.  Molecular Potential Energy Functions , 1985 .

[42]  G. Schatz,et al.  Semiclassical vibrational eigenvalues of triatomic molecules: Application of the FFT method to SO2, H2O, H+3, and CO2 , 1984 .

[43]  A. Ravishankara,et al.  Kinetic study of the reaction of OH with CO from 250 to 1040 K , 1983 .

[44]  R. Blint,et al.  The potential energy surface of the HO2 molecular system , 1979 .

[45]  K. Sorbie,et al.  Semiclassical eigenvalues for non-separable bound systems from classical trajectories: the higher energy levels , 1977 .

[46]  Lionel M. Raff,et al.  Quasiclassical trajectory studies using 3D spline interpolation of ab initio surfaces , 1975 .