A numerical methodology for the Painlevé equations

The six Painleve transcendents P"I-P"V"I have both applications and analytic properties that make them stand out from most other classes of special functions. Although they have been the subject of extensive theoretical investigations for about a century, they still have a reputation for being numerically challenging. In particular, their extensive pole fields in the complex plane have often been perceived as 'numerical mine fields'. In the present work, we note that the Painleve property in fact provides the opportunity for very fast and accurate numerical solutions throughout such fields. When combining a Taylor/Pade-based ODE initial value solver for the pole fields with a boundary value solver for smooth regions, numerical solutions become available across the full complex plane. We focus here on the numerical methodology, and illustrate it for the P"I equation. In later studies, we will concentrate on mathematical aspects of both the P"I and the higher Painleve transcendents.

[1]  Sheehan Olver,et al.  Numerical Solution of Riemann–Hilbert Problems: Painlevé II , 2011, Found. Comput. Math..

[2]  Satish C. Reddy,et al.  A MATLAB differentiation matrix suite , 2000, TOMS.

[3]  D. E. Roberts,et al.  The epsilon algorithm and related topics , 2000 .

[4]  P. Painlevé,et al.  Mémoire sur les équations différentielles dont l'intégrale générale est uniforme , 1900 .

[5]  Mari Paz Calvo,et al.  High-Order Symplectic Runge-Kutta-Nyström Methods , 1993, SIAM J. Sci. Comput..

[6]  S. Kantor Theorie der Transformationen ImR3, welche keine Fundamentalcurven 1. Art besitzen und ihrer endlichen gruppen , 1897 .

[7]  B. Gambier,et al.  Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes , 1910 .

[8]  N. Higham The numerical stability of barycentric Lagrange interpolation , 2004 .

[9]  P. Boutroux,et al.  Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre (suite) , 1913 .

[10]  Boris Dubrovin,et al.  On universality of critical behaviour in the focusing nonlinear Schr\"odinger equation, elliptic umbilic catastrophe and the {\it tritronqu\'ee} solution to the Painlev\'e-I equation , 2007, 0704.0501.

[11]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[12]  P. Painlevé,et al.  Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme , 1902 .

[13]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[14]  V. Yu. Novokshenov,et al.  Padé approximations for Painlevé I and II transcendents , 2009 .

[15]  J. Dormand,et al.  High order embedded Runge-Kutta formulae , 1981 .

[16]  P. Wynn,et al.  The epsilon algorithm and operational formulas of numerical analysis : (mathematics of computation, _1_5(1961), p 151-158) , 1961 .

[17]  George F. Corliss,et al.  Integrating ODEs in the complex plane—pole vaulting , 1980 .

[18]  Nalini Joshi,et al.  On Boutroux's Tritronquée Solutions of the First Painlevé Equation , 2001 .

[19]  Yudell L. Luke,et al.  Computations of coefficients in the polynomials of Pade´approximations by solving systems of linear equations , 1980 .

[20]  Peter A. Clarkson,et al.  The Painlevé‐Kowalevski and Poly‐Painlevé Tests for Integrability , 1992 .

[21]  P. J. Prince,et al.  Runge-Kutta-Nystrom triples , 1987 .

[22]  Georg Heinig,et al.  A Stabilized Superfast Solver for Nonsymmetric Toeplitz Systems , 2001, SIAM J. Matrix Anal. Appl..

[23]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[24]  I. M. Willers,et al.  A new integration algorithm for ordinary differential equations based on continued fraction approximations , 1974, CACM.

[25]  Hui-zeng Qin,et al.  A note on an open problem about the first Painlevé equation , 2008 .

[26]  Fernando Reitich,et al.  Approximation of analytic functions: a method of enhanced convergence , 1994 .

[27]  Peter A. Clarkson,et al.  Painlevé equations: nonlinear special functions , 2003 .

[28]  Moawwad E. A. El-Mikkawy,et al.  High-Order Embedded Runge-Kutta-Nystrom Formulae , 1987 .

[29]  David Barton,et al.  The Automatic Solution of Systems of Ordinary Differential Equations by the Method of Taylor Series , 1971, Computer/law journal.

[30]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .