A numerical methodology for the Painlevé equations
暂无分享,去创建一个
[1] Sheehan Olver,et al. Numerical Solution of Riemann–Hilbert Problems: Painlevé II , 2011, Found. Comput. Math..
[2] Satish C. Reddy,et al. A MATLAB differentiation matrix suite , 2000, TOMS.
[3] D. E. Roberts,et al. The epsilon algorithm and related topics , 2000 .
[4] P. Painlevé,et al. Mémoire sur les équations différentielles dont l'intégrale générale est uniforme , 1900 .
[5] Mari Paz Calvo,et al. High-Order Symplectic Runge-Kutta-Nyström Methods , 1993, SIAM J. Sci. Comput..
[6] S. Kantor. Theorie der Transformationen ImR3, welche keine Fundamentalcurven 1. Art besitzen und ihrer endlichen gruppen , 1897 .
[7] B. Gambier,et al. Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes , 1910 .
[8] N. Higham. The numerical stability of barycentric Lagrange interpolation , 2004 .
[9] P. Boutroux,et al. Recherches sur les transcendantes de M. Painlevé et l'étude asymptotique des équations différentielles du second ordre (suite) , 1913 .
[10] Boris Dubrovin,et al. On universality of critical behaviour in the focusing nonlinear Schr\"odinger equation, elliptic umbilic catastrophe and the {\it tritronqu\'ee} solution to the Painlev\'e-I equation , 2007, 0704.0501.
[11] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[12] P. Painlevé,et al. Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme , 1902 .
[13] Lloyd N. Trefethen,et al. Barycentric Lagrange Interpolation , 2004, SIAM Rev..
[14] V. Yu. Novokshenov,et al. Padé approximations for Painlevé I and II transcendents , 2009 .
[15] J. Dormand,et al. High order embedded Runge-Kutta formulae , 1981 .
[16] P. Wynn,et al. The epsilon algorithm and operational formulas of numerical analysis : (mathematics of computation, _1_5(1961), p 151-158) , 1961 .
[17] George F. Corliss,et al. Integrating ODEs in the complex plane—pole vaulting , 1980 .
[18] Nalini Joshi,et al. On Boutroux's Tritronquée Solutions of the First Painlevé Equation , 2001 .
[19] Yudell L. Luke,et al. Computations of coefficients in the polynomials of Pade´approximations by solving systems of linear equations , 1980 .
[20] Peter A. Clarkson,et al. The Painlevé‐Kowalevski and Poly‐Painlevé Tests for Integrability , 1992 .
[21] P. J. Prince,et al. Runge-Kutta-Nystrom triples , 1987 .
[22] Georg Heinig,et al. A Stabilized Superfast Solver for Nonsymmetric Toeplitz Systems , 2001, SIAM J. Matrix Anal. Appl..
[23] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[24] I. M. Willers,et al. A new integration algorithm for ordinary differential equations based on continued fraction approximations , 1974, CACM.
[25] Hui-zeng Qin,et al. A note on an open problem about the first Painlevé equation , 2008 .
[26] Fernando Reitich,et al. Approximation of analytic functions: a method of enhanced convergence , 1994 .
[27] Peter A. Clarkson,et al. Painlevé equations: nonlinear special functions , 2003 .
[28] Moawwad E. A. El-Mikkawy,et al. High-Order Embedded Runge-Kutta-Nystrom Formulae , 1987 .
[29] David Barton,et al. The Automatic Solution of Systems of Ordinary Differential Equations by the Method of Taylor Series , 1971, Computer/law journal.
[30] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .