Genetic code expansion in the mouse brain.

Site-specific incorporation of non-natural amino acids into proteins, via genetic code expansion with pyrrolysyl tRNA synthetase (PylRS) and tRNA(Pyl)CUA pairs (and their evolved derivatives) from Methanosarcina sp., forms the basis of powerful approaches to probe and control protein function in cells and invertebrate organisms. Here we demonstrate that adeno-associated viral delivery of these pairs enables efficient genetic code expansion in primary neuronal culture, organotypic brain slices and the brains of live mice.

[1]  A. Loudon,et al.  A Gq-Ca2+ Axis Controls Circuit-Level Encoding of Circadian Time in the Suprachiasmatic Nucleus , 2013, Neuron.

[2]  J. Chin,et al.  Expanding the genetic code of Drosophila melanogaster. , 2012, Nature chemical biology.

[3]  Stuart L. Beal,et al.  Ways to Fit a PK Model with Some Data Below the Quantification Limit , 2001, Journal of Pharmacokinetics and Pharmacodynamics.

[4]  Jason W. Chin,et al.  Designer proteins: applications of genetic code expansion in cell biology , 2012, Nature Reviews Molecular Cell Biology.

[5]  S. Kaech,et al.  Culturing hippocampal neurons , 2006, Nature Protocols.

[6]  A. Ting,et al.  Site-specific protein labeling using PRIME and chelation-assisted click chemistry , 2013, Nature Protocols.

[7]  Jason W. Chin,et al.  Efficient Multisite Unnatural Amino Acid Incorporation in Mammalian Cells via Optimized Pyrrolysyl tRNA Synthetase/tRNA Expression and Engineered eRF1 , 2014, Journal of the American Chemical Society.

[8]  S. Reppert,et al.  Coordination of circadian timing in mammals , 2002, Nature.

[9]  L. Leinwand,et al.  Suppression of Nonsense Mutations in Cell Culture and Mice by Multimerized Suppressor tRNA Genes , 2000, Molecular and Cellular Biology.

[10]  H. Park,et al.  High Cleavage Efficiency of a 2A Peptide Derived from Porcine Teschovirus-1 in Human Cell Lines, Zebrafish and Mice , 2011, PloS one.

[11]  J. Chin,et al.  Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions , 2012, Journal of the American Chemical Society.

[12]  C. Colwell Linking neural activity and molecular oscillations in the SCN , 2011, Nature Reviews Neuroscience.

[13]  J. Chin,et al.  Genetically encoding N(epsilon)-methyl-L-lysine in recombinant histones. , 2009, Journal of the American Chemical Society.

[14]  Peng R. Chen,et al.  Site-specific incorporation of photo-cross-linker and bioorthogonal amino acids into enteric bacterial pathogens. , 2011, Journal of the American Chemical Society.

[15]  K. Johnsson,et al.  Imaging and manipulating proteins in live cells through covalent labeling. , 2015, Nature chemical biology.

[16]  J. Chin,et al.  Genetically encoded photocontrol of protein localization in mammalian cells. , 2010, Journal of the American Chemical Society.

[17]  J. Chin,et al.  Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal , 2014, Nature Biotechnology.

[18]  S. Yokoyama,et al.  Adding l-lysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyl-tRNA synthetases. , 2008, Biochemical and biophysical research communications.

[19]  J. Chin,et al.  Expanding the Genetic Code of Yeast for Incorporation of Diverse Unnatural Amino Acids via a Pyrrolysyl-tRNA Synthetase/tRNA Pair , 2010, Journal of the American Chemical Society.

[20]  J. Rabinowitz,et al.  Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[21]  J. Chin,et al.  Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. , 2014, Chemical reviews.

[22]  J. Chin,et al.  Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. , 2008, Nature chemical biology.

[23]  A. B. Reddy,et al.  Analysis of circadian mechanisms in the suprachiasmatic nucleus by transgenesis and biolistic transfection. , 2005, Methods in enzymology.

[24]  Thomas Jaki,et al.  Estimation of pharmacokinetic parameters with the R package PK , 2011 .

[25]  Yun Sun,et al.  Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana. , 2013, Angewandte Chemie.

[26]  B. Casey,et al.  Genes, brain, and behavior: Bridging disciplines , 2006, Cognitive, affective & behavioral neuroscience.

[27]  D. O'Leary,et al.  In Vivo Expression of a Light-Activatable Potassium Channel Using Unnatural Amino Acids , 2013, Neuron.

[28]  J. Chin,et al.  Expanding the Genetic Code of an Animal , 2011, Journal of the American Chemical Society.

[29]  J. Chin,et al.  Expanding and reprogramming the genetic code of cells and animals. , 2014, Annual review of biochemistry.

[30]  Ook Joon Yoo,et al.  PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Steve D. M. Brown,et al.  The mouse ascending: perspectives for human-disease models , 2007, Nature Cell Biology.