OPTIMAL CONTROL OF THE SPREAD OF MALARIA SUPERINFECTIVITY

Malaria is a life-threatening disease caused by parasites that are transmitted to people through the bites of infected mosquitoes. In this paper, a deterministic model for malaria transmission, that incorporates superinfection is presented. Qualitative analysis of the model reveals the presence of backward bifurcation in which a stable disease-free equilibrium co-exists with a stable endemic equilibrium when the associated reproduction threshold is less than unity. Optimal control theory is then applied to the model to study time-dependent treatment efforts to minimize the infected in individuals while keeping the implementation cost at a minimum.

[1]  S. Lindsay,et al.  Malaria in the African highlands: past, present and future. , 1998, Bulletin of the World Health Organization.

[2]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[3]  M. Mota,et al.  Superinfection in malaria: Plasmodium shows its iron will , 2011, EMBO reports.

[4]  Abba B. Gumel,et al.  Mathematical analysis of the role of repeated exposure on malaria transmission dynamics , 2008 .

[5]  C. Chiyaka,et al.  Transmission model of endemic human malaria in a partially immune population , 2007, Math. Comput. Model..

[6]  Antoine Flahault,et al.  The unexpected importance of mosquito oviposition behaviour for malaria: non-productive larval habitats can be sources for malaria transmission , 2005, Malaria Journal.

[7]  P. R. Parthasarathy The effect of superinfection on the distribution of the infectious period--a continued fraction approximation. , 1997, IMA journal of mathematics applied in medicine and biology.

[8]  Irwin W. Sherman,et al.  Malaria : parasite biology, pathogenesis, and protection , 1998 .

[9]  N. Bailey,et al.  The Biomathematics of Malaria , 1984 .

[10]  Fred Brauer,et al.  Backward bifurcations in simple vaccination models , 2004 .

[11]  C. Rogier,et al.  Bayesian analysis of an epidemiologic model of Plasmodium falciparum malaria infection in Ndiop, Senegal. , 2000, American journal of epidemiology.

[12]  Carlos Castillo-Chavez,et al.  Dynamical models of tuberculosis and their applications. , 2004, Mathematical biosciences and engineering : MBE.

[13]  Nicolas Bacaer,et al.  A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. , 2005, Mathematical biosciences and engineering : MBE.

[14]  David L Smith,et al.  Endemicity response timelines for Plasmodium falciparum elimination , 2009, Malaria Journal.

[15]  Yanzhao Cao,et al.  Optimal control of vector-borne diseases: Treatment and prevention , 2009 .

[16]  J. Nedelman Inoculation and recovery rates in the malaria model of Dietz, Molineaux, and Thomas , 1984 .

[17]  G. Poveda,et al.  Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System , 2006, Malaria Journal.

[18]  A. Gumel,et al.  THEORETICAL ASSESSMENT OF AVIAN INFLUENZA VACCINE , 2009 .

[19]  Winston Garira,et al.  Mathematical analysis of a model for HIV-malaria co-infection. , 2009, Mathematical biosciences and engineering : MBE.

[20]  J. Carr Applications of Centre Manifold Theory , 1981 .

[21]  NAKUL CHITNIS,et al.  Bifurcation Analysis of a Mathematical Model for Malaria Transmission , 2006, SIAM J. Appl. Math..

[22]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[23]  Mostafa Rachik,et al.  Optimal control and infectiology: Application to an HIV/AIDS model , 2006, Appl. Math. Comput..

[24]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[25]  Salisu M. Garba,et al.  Backward bifurcations in dengue transmission dynamics. , 2008, Mathematical biosciences.

[26]  J.A.M. Felippe de Souza,et al.  Optimal control theory applied to the anti-viral treatment of AIDS , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[27]  Suzanne Lenhart,et al.  Optimal control of treatments in a two-strain tuberculosis model , 2002 .

[28]  G. Macdonald,et al.  The analysis of infection rates in diseases in which superinfection occurs. , 1950, Tropical diseases bulletin.

[29]  S. Aneke Mathematical modelling of drug resistant malaria parasites and vector populations , 2002 .

[30]  P. Byass,et al.  Mortality and morbidity from malaria among children in a rural area of The Gambia, West Africa. , 1987, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[31]  C. Newbold,et al.  Host-mediated regulation of superinfection in malaria , 2011, Nature Medicine.

[32]  Violaine S. Mitchell,et al.  Malaria: Obstacles and Opportunities , 1991 .

[33]  Hem Raj Joshi,et al.  Optimal control of an HIV immunology model , 2002 .

[34]  Emmitt R. Jolly,et al.  Treatment-seeking behaviour for febrile illness in an area of seasonal malaria transmission in rural Ethiopia , 2005, BMC Bioinformatics.

[35]  Baojun Song,et al.  Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. , 2008, Mathematical biosciences and engineering : MBE.

[36]  D. Swinkels,et al.  Hepcidin in malaria superinfection: can findings be translated to humans? , 2011, Nature Medicine.

[37]  N. French,et al.  HIV infection as a cofactor for severe falciparum malaria in adults living in a region of unstable malaria transmission in South Africa , 2004, AIDS.

[38]  Yun Zou,et al.  Optimal and sub-optimal quarantine and isolation control in SARS epidemics , 2007, Mathematical and Computer Modelling.

[39]  Hee-Dae Kwon,et al.  Optimal treatment strategies derived from a HIV model with drug-resistant mutants , 2007, Appl. Math. Comput..

[40]  J. Dushoff,et al.  The entomological inoculation rate and Plasmodium falciparum infection in African children , 2005, Nature.

[41]  R. Rosenberg,et al.  Seasonal fluctuation of Plasmodium falciparum gametocytaemia. , 1990, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[42]  Elamin H Elbasha,et al.  Theoretical Assessment of Public Health Impact of Imperfect Prophylactic HIV-1 Vaccines with Therapeutic Benefits , 2006, Bulletin of mathematical biology.

[43]  J. Breman,et al.  Malaria surveillance counts. , 2007, The American journal of tropical medicine and hygiene.

[44]  James Watmough,et al.  Role of incidence function in vaccine-induced backward bifurcation in some HIV models. , 2007, Mathematical biosciences.

[45]  J. Watmough,et al.  Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.

[46]  A. Gumel,et al.  Qualitative dynamics of lowly- and highly-pathogenic avian influenza strains. , 2013, Mathematical biosciences.

[47]  H. W. Kumm,et al.  EFFECT OF REPEATED SUPERINFECTION UPON THE POTENCY OF IMMUNE SERUM OF MONKEYS HARBORING CHRONIC INFECTIONS OF PLASMODIUM KNOWLESI , 1938, The Journal of experimental medicine.

[48]  A. Githeko,et al.  Association between climate variability and malaria epidemics in the East African highlands. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Xiefei Yan,et al.  Optimal quarantine and isolation strategies in epidemics control , 2007 .

[50]  Jerry Nedelman,et al.  Introductory review some new thoughts about some old malaria models , 1985 .

[51]  F. Ariey,et al.  The puzzling links between malaria transmission and drug resistance. , 2003, Trends in parasitology.

[52]  R. Aumann,et al.  Orderable Set Functions and Continuity. III: Orderability and Absolute Continuity , 1977 .

[53]  K Dietz,et al.  A malaria model tested in the African savannah. , 1974, Bulletin of the World Health Organization.

[54]  I. Nåsell On superinfection in malaria. , 1986, IMA journal of mathematics applied in medicine and biology.

[55]  A. Krener The High Order Maximal Principle and Its Application to Singular Extremals , 1977 .

[56]  W. Deressa,et al.  Self-treatment of malaria in rural communities, Butajira, southern Ethiopia. , 2003, Bulletin of the World Health Organization.

[57]  James L Regens,et al.  An individual-based model of Plasmodium falciparum malaria transmission on the coast of Kenya. , 2003, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[58]  T. Goater,et al.  Parasitism: The Diversity and Ecology of Animal Parasites , 2001 .

[59]  Takashi Yoneyama,et al.  Optimal and sub‐optimal control in Dengue epidemics , 2001 .

[60]  S. D. Del Valle,et al.  The impact of bed-net use on malaria prevalence. , 2013, Journal of theoretical biology.

[61]  V. Lakshmikantham,et al.  Stability Analysis of Nonlinear Systems , 1988 .

[62]  Huaiping Zhu,et al.  A mathematical model for assessing control strategies against West Nile virus , 2005, Bulletin of mathematical biology.

[63]  C. Drakeley,et al.  Host haematological factors influencing the transmission of Plasmodium falciparum gametocytes to Anopheles gambiae s.s. mosquitoes , 1999, Tropical medicine & international health : TM & IH.

[64]  Daniel J. Gould,et al.  Factors affecting the infection of anophelines with human malaria in Thailand. , 1969, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[65]  Carlos Castillo-Chavez,et al.  Backwards bifurcations and catastrophe in simple models of fatal diseases , 1998, Journal of mathematical biology.

[66]  Roy M. Anderson,et al.  The Population Dynamics of Infectious Diseases: Theory and Applications , 1982, Population and Community Biology.

[67]  J. Koella,et al.  Epidemiological models for the spread of anti-malarial resistance , 2003, Malaria Journal.

[68]  O. Diekmann,et al.  On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.

[69]  S. Lenhart,et al.  OPTIMIZING CHEMOTHERAPY IN AN HIV MODEL , 1998 .

[70]  Jean M. Tchuenche,et al.  A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria , 2008, Appl. Math. Comput..

[71]  D. Kirschner,et al.  Optimal control of the chemotherapy of HIV , 1997, Journal of mathematical biology.

[72]  G. Covell Relationship between malarial parasitaemia and symptoms of the disease: a review of the literature. , 1960, Bulletin of the World Health Organization.

[73]  R. May,et al.  The population dynamics of malaria , 1982 .

[74]  David L Smith,et al.  Statics and dynamics of malaria infection in Anopheles mosquitoes , 2004, Malaria Journal.