Progress in non-volatile memory devices based on nanostructured materials and nanofabrication

Semiconductor device technology has continuously advanced through active research and the development of innovative technologies during the past decades. Semiconductor devices are expected to descend below the 10 nm scale within the next 10 years. Meanwhile, nanofabrication technology and the synthesis of nanostructured materials for novel device applications have made considerable progress too. This review will discuss new technologies that make this continuous device scaling possible. Then, recent efforts and research activities will be discussed regarding the fabrication and characterization of non-volatile memory devices made of nanostructured materials and by nanofabrication. This review concludes with an analysis of device fabrication strategies and device architectures beyond the device scaling limit with an emphasis on some promising technologies from bottom-up approaches.

[1]  Chang-gyu Hwang,et al.  Nanotechnology enables a new memory growth model , 2003 .

[2]  Yang Yang,et al.  Polyaniline nanofiber/gold nanoparticle nonvolatile memory. , 2005, Nano letters.

[3]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[4]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[5]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[6]  Sangsig Kim,et al.  Capacitance characteristics of MOS capacitors embedded with colloidally synthesized gold nanoparticles , 2006 .

[7]  Jung-Hyun Lee,et al.  Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. , 2009, Nano letters.

[8]  C. Ozkan,et al.  Digital memory device based on tobacco mosaic virus conjugated with nanoparticles , 2006, Nature nanotechnology.

[9]  Benjamin W. Maynor,et al.  Ultralong, Well‐Aligned Single‐Walled Carbon Nanotube Architectureson Surfaces , 2003 .

[10]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[11]  C. Pearson,et al.  Metal nano-floating gate memory devices fabricated at low temperature , 2006 .

[12]  Jang‐Sik Lee,et al.  Organic Field-Effect Transistor-Based Nonvolatile Memory Devices Having Controlled Metallic Nanoparticle/Polymer Composite Layers , 2010 .

[13]  Sandip Tiwari,et al.  Fast and long retention-time nano-crystal memory , 1996 .

[14]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[15]  Koon Gee Neoh,et al.  Polymer electronic memories: Materials, devices and mechanisms , 2008 .

[16]  Heng-Yuan Lee,et al.  Low-Power Switching of Nonvolatile Resistive Memory Using Hafnium Oxide , 2007 .

[17]  Jang-Sik Lee,et al.  Flexible organic transistor memory devices. , 2010, Nano letters.

[18]  Wei Lin Leong,et al.  Micellar poly(styrene-b-4-vinylpyridine)-nanoparticle hybrid system for non-volatile organic transistor memory , 2009 .

[19]  Kinam Kim,et al.  Memory technology in the future , 2007 .

[20]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[21]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[22]  Qi Liu,et al.  Nonpolar Nonvolatile Resistive Switching in Cu Doped $\hbox{ZrO}_{2}$ , 2008, IEEE Electron Device Letters.

[23]  Wei Lin Leong,et al.  Charging phenomena in pentacene-gold nanoparticle memory device , 2007 .

[24]  Study of tunneling mechanism of Au nanocrystals in HfAlO matrix as floating gate memory , 2008 .

[25]  Yang Xu,et al.  Thermally controlled synthesis of single-wall carbon nanotubes with selective diameters , 2009 .

[26]  Kinam Kim,et al.  Data Retention Characteristics of Nitride-Based Charge Trap Memory Devices with High-k Dielectrics and High-Work-Function Metal Gates for Multi-Gigabit Flash Memory , 2006 .

[27]  Vincent M Rotello,et al.  Nanoimprint Lithography for Functional Three‐Dimensional Patterns , 2010, Advanced materials.

[28]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[29]  Sangsul Lee,et al.  Resistance Switching Characteristics for Nonvolatile Memory Operation of Binary Metal Oxides , 2007 .

[30]  L. Jay Guo,et al.  Recent progress in nanoimprint technology and its applications , 2004 .

[31]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[32]  Jong Yeog Son,et al.  Direct observation of conducting filaments on resistive switching of NiO thin films , 2008 .

[33]  Charles R. Szmanda,et al.  Programmable polymer thin film and non-volatile memory device , 2004, Nature materials.

[34]  V. Markovich,et al.  Current-induced metastable resistive states with memory in low-doped manganites , 2001 .

[35]  Marin Alexe,et al.  Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch-2 density. , 2008, Nature nanotechnology.

[36]  Tomoji Kawai,et al.  Nonvolatile bipolar resistive memory switching in single crystalline NiO heterostructured nanowires. , 2009, Journal of the American Chemical Society.

[37]  Jaegab Lee,et al.  Tunable Memory Characteristics of Nanostructured, Nonvolatile Charge Trap Memory Devices Based on a Binary Mixture of Metal Nanoparticles as a Charge Trapping Layer , 2009 .

[38]  Soo-Jin Kim,et al.  Organic-Transistor-Based Nano-Floating-Gate Memory Devices Having Multistack Charge-Trapping Layers , 2010, IEEE Electron Device Letters.

[39]  S. O. Park,et al.  Electrical observations of filamentary conductions for the resistive memory switching in NiO films , 2006 .

[40]  Se-Ho Lee,et al.  Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires , 2006 .

[41]  D. Bremaud,et al.  Electrical current distribution across a metal–insulator–metal structure during bistable switching , 2001, cond-mat/0104452.

[42]  J. De Blauwe,et al.  Nanocrystal nonvolatile memory devices , 2002 .

[43]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[44]  Zhaoning Yu,et al.  Circuit fabrication at 17 nm half-pitch by nanoimprint lithography. , 2006, Nano letters.

[45]  M. C. Scott,et al.  Fatigue-free ferroelectric capacitors with platinum electrodes , 1995, Nature.

[46]  Wei Lu,et al.  TOPICAL REVIEW: Semiconductor nanowires , 2006 .

[47]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[48]  H. Hamann,et al.  Ultra-high-density phase-change storage and memory , 2006, Nature materials.

[49]  F. Caruso,et al.  Layer-by-layer assembled charge-trap memory devices with adjustable electronic properties. , 2007, Nature nanotechnology.

[50]  S. Kim,et al.  Highly entangled hollow TiO2nanoribbons templating diphenylalanine assembly , 2009 .

[51]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[52]  Heon-Jin Choi,et al.  Controlled growth of ZnO nanowires and their optical properties , 2002 .

[53]  Alan M. Cassell,et al.  Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes , 1999 .

[54]  Frederick T. Chen,et al.  Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications , 2008 .

[55]  Jang‐Sik Lee,et al.  Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices , 2008 .

[56]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[57]  Ananth Dodabalapur,et al.  Non‐Volatile Organic Memory Applications Enabled by In Situ Synthesis of Gold Nanoparticles in a Self‐Assembled Block Copolymer , 2008 .

[58]  H. Schift Nanoimprint lithography: An old story in modern times? A review , 2008 .

[59]  California,et al.  Field-induced resistive switching in metal-oxide interfaces , 2004, cond-mat/0402687.

[60]  Chung-Ying Yang,et al.  Phase-change Ge-Sb nanowires: synthesis, memory switching, and phase-instability. , 2009, Nano letters.

[61]  Jaegab Lee,et al.  Nonvolatile nanocrystal charge trap flash memory devices using a micellar route to ordered arrays of cobalt nanocrystals , 2007 .

[62]  Wei Zhang,et al.  6 nm half-pitch lines and 0.04 µm2 static random access memory patterns by nanoimprint lithography , 2005 .

[63]  Chun-Yen Chang,et al.  High-density MIM capacitors with HfO2 dielectrics , 2004 .

[64]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[65]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[66]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[67]  Se-Ho Lee,et al.  Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect. , 2006, Journal of the American Chemical Society.

[68]  Carl P. Tripp,et al.  Template‐Assisted Fabrication of Dense, Aligned Arrays of Titania Nanotubes with Well‐Controlled Dimensions on Substrates , 2004 .

[69]  Christopher Pearson,et al.  A pentacene-based organic thin film memory transistor , 2009 .

[70]  J. Ouyang,et al.  Electrical Switching and Bistability in Organic/Polymeric Thin Films and Memory Devices , 2006 .

[71]  C. Gerber,et al.  Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals , 2001 .

[72]  Wei Wu,et al.  Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography , 2004 .

[73]  Sandip Tiwari,et al.  Single charge and confinement effects in nano-crystal memories , 1996 .

[74]  Roberto Bez,et al.  Introduction to flash memory , 2003, Proc. IEEE.

[75]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[76]  Tomoji Kawai,et al.  Resistive-switching memory effects of NiO nanowire/metal junctions. , 2010, Journal of the American Chemical Society.

[77]  Edwin C. Kan,et al.  Self-assembly of metal nanocrystals on ultrathin oxide for nonvolatile memory applications , 2005 .

[78]  S. Rhee,et al.  Resistance Switching Behaviors of Hafnium Oxide Films Grown by MOCVD for Nonvolatile Memory Applications , 2008 .

[79]  Dago M. de Leeuw,et al.  Switching and filamentary conduction in non-volatile organic memories , 2006 .

[80]  Soo-Jin Kim,et al.  Nonvolatile nano-floating gate memory devices based on pentacene semiconductors and organic tunneling insulator layers , 2010 .

[81]  C. Pearson,et al.  Hybrid silicon-organic nanoparticle memory device , 2003 .

[82]  G. Pei,et al.  Metal nanocrystal memories. I. Device design and fabrication , 2002 .

[83]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[84]  Jang‐Sik Lee Recent progress in gold nanoparticle-based non-volatile memory devices , 2010 .

[85]  C. Gamrat,et al.  Gold nanoparticle-pentacene memory-transistors , 2008, 0802.2633.

[86]  Tetsuo Endoh,et al.  Reliability issues of flash memory cells , 1993, Proc. IEEE.

[87]  Cheol Seong Hwang,et al.  Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films , 2007 .

[88]  K. Szot,et al.  Localized metallic conductivity and self-healing during thermal reduction of SrTiO3. , 2002, Physical review letters.

[89]  Sandip Tiwari,et al.  A silicon nanocrystals based memory , 1996 .

[90]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[91]  A. Fazio,et al.  Flash Memory Scaling , 2004 .

[92]  C. Yoon,et al.  Formation of gold nanoparticles embedded in a polyimide film for nanofloating gate memory , 2007 .

[93]  Yi Su,et al.  Memory effect of a polymer thin-film transistor with self-assembled gold nanoparticles in the gate dielectric , 2006, IEEE Transactions on Nanotechnology.

[94]  Zhiyong Fan,et al.  ZnO nanowires synthesized by vapor trapping CVD method , 2004 .

[95]  Wei Zhang,et al.  Sub-10 nm imprint lithography and applications , 1997, 1997 55th Annual Device Research Conference Digest.

[96]  Piero Olivo,et al.  Flash memory cells-an overview , 1997, Proc. IEEE.

[97]  Ginger M. Denison,et al.  High-resolution soft lithography: enabling materials for nanotechnologies. , 2004, Angewandte Chemie.

[98]  W. Guan,et al.  Organic thin-film transistor memory with gold nanocrystals embedded in polyimide gate dielectric , 2008 .

[99]  Ya-Chin King,et al.  Charge-trap memory device fabricated by oxidation of Si/sub 1-x/Ge/sub x/ , 2001 .

[100]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.