The Abstract Expressionists and Les Automatistes: A shared multi-fractal depth?

Statistical analysis of abstract paintings is becoming an increasingly important tool for understanding the creative process of visual artists. We present a multifractal analysis of 'poured' paintings from the Abstract Expressionism and Les Automatistes movements. The box-counting dimension (D"0) is measured for the analyzed paintings, as is the associated multifractal depth @DD=D"0-D"~, where D"~ is the asymptotic dimension. We investigate the role of depth by plotting a 'phase space' diagram that examines the relationship between D"0 and D"~. We show that, although the D"0 and D"~ values vary between individual paintings, the collection of paintings exhibit a similar depth, suggesting a shared visual characteristic for this genre. We discuss the visual implications of this result.

[1]  Yang Wang,et al.  Multifractal analysis and authentication of Jackson Pollock paintings , 2008, Electronic Imaging.

[2]  E. Bacry,et al.  The Multifractal Formalism Revisited with Wavelets , 1994 .

[3]  J. R. Mureika,et al.  Multifractal Fingerprints in the Visual Arts , 2004, Leonardo.

[4]  A. Arneodo,et al.  Wavelet transform of multifractals. , 1988, Physical review letters.

[5]  J. Rogers Chaos , 1876 .

[6]  Scale invariance of galaxy clustering , 2000 .

[7]  Emmanuel Bacry,et al.  THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS , 1995 .

[8]  Yves Meyer,et al.  Wavelets and Applications , 1992 .

[9]  Sangwon Lee,et al.  Simulating and analysing Jackson Pollock's paintings , 2007 .

[10]  Harsh Mathur,et al.  Fractal Analysis: Revisiting Pollock's drip paintings , 2006, Nature.

[11]  J R Mureika,et al.  Multifractal structure in nonrepresentational art. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  David G. Stork,et al.  Multiple visual features for the computer authentication of Jackson Pollock's drip paintings: beyond box counting and fractals , 2009, Electronic Imaging.

[13]  Patrice Abry,et al.  Multifractality Tests Using Bootstrapped Wavelet Leaders , 2007, IEEE Transactions on Signal Processing.

[14]  W. Hargrove,et al.  Lacunarity analysis: A general technique for the analysis of spatial patterns. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  David J Field,et al.  Variations in Intensity Statistics for Representational and Abstract Art, and for Art from the Eastern and Western Hemispheres , 2008, Perception.

[16]  C. Redies,et al.  A universal model of esthetic perception based on the sensory coding of natural stimuli. , 2007, Spatial vision.

[17]  J. A. Wise,et al.  Perceptual and physiological responses to the visual complexity of fractal patterns. , 2005, Nonlinear dynamics, psychology, and life sciences.

[18]  Richard P. Taylor,et al.  Fractal analysis of Pollock's drip paintings , 1999, Nature.

[19]  Jensen,et al.  Scaling structure and thermodynamics of strange sets. , 1987, Physical review. A, General physics.

[20]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[21]  J R Mureika,et al.  Fractal dimensions in perceptual color space: a comparison study using Jackson Pollock's art. , 2005, Chaos.

[22]  P. Abry,et al.  Bootstrap for Empirical Multifractal Analysis , 2007, IEEE Signal Processing Magazine.

[23]  Romain Murenzi,et al.  Wavelet Transform of Fractal Aggregates , 1989 .

[24]  J. R. Mureika,et al.  Review: Multifractal Analysis of Packed Swiss Cheese Cosmologies , 2004 .

[25]  Jose Alvarez-Ramirez,et al.  1/f-Noise structures in Pollocks's drip paintings , 2008 .

[26]  Harsh Mathur,et al.  Drip paintings and fractal analysis. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  E. Bacry,et al.  Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  David J Field,et al.  Statistical regularities of art images and natural scenes: spectra, sparseness and nonlinearities. , 2007, Spatial vision.

[29]  S. Jaffard,et al.  Wavelet Leaders in Multifractal Analysis , 2006 .

[30]  Richard P Taylor Order in Pollock's chaos. , 2002, Scientific American.

[31]  Richard Taylor,et al.  Authenticating Pollock paintings using fractal geometry , 2007, Pattern Recognit. Lett..

[32]  Jose Alvarez-Ramirez,et al.  Performance of a high-dimensional R/S method for Hurst exponent estimation , 2008 .

[33]  Joachim Denzler,et al.  Fractal-like image statistics in visual art: similarity to natural scenes. , 2007, Spatial vision.

[34]  Thorbjörn Laike,et al.  Investigations of Human EEG Response to Viewing Fractal Patterns , 2008, Perception.

[35]  E. Bacry,et al.  Singularity spectrum of fractal signals from wavelet analysis: Exact results , 1993 .

[36]  R. P. Taylor,et al.  Fractal Analysis: Revisiting Pollock's drip paintings (Reply) , 2006, Nature.