Genetic algorithms and Machine Learning

There is no a priori reason why machine learning must borrow from nature. A field could exist, complete with well-defined algorithms, data structures, and theories of learning, without once referring to organisms, cognitive or genetic structures, and psychological or evolutionary theories. Yet at the end of the day, with the position papers written, the computers plugged in, and the programs debugged, a learning edifice devoid of natural metaphor would lack something. It would ignore the fact that all these creations have become possible only after three billion years of evolution on this planet. It would miss the point that the very ideas of adaptation and learning are concepts invented by the most recent representatives of the species Homo sapiens from the careful observation of themselves and life around them. It would miss the point that natural examples of learning and adaptation are treasure troves of robust procedures and structures. Fortunately, the field of machine learning does rely upon nature's bounty for both inspiration and mechanism. Many machine learning systems now borrow heavily from current thinking in cognitive science, and rekindled interest in neural networks and connectionism is evidence of serious mechanistic and philosophical currents running through the field. Another area where natural example has been tapped is in work on genetic algorithms (GAs) and genetics-based machine learning. Rooted in the early cybernetics movement (Holland, 1962), progress has been made in both theory (Holland, 1975; Holland, Holyoak, Nisbett, & Thagard, 1986) and application (Goldberg, 1989; Grefenstette, 1985, 1987) to the point where genetics-based systems are finding their way into everyday commercial use (Davis & Coombs, 1987; Fourman, 1985).