Pfaffian solutions to a (3+1)-dimensional generalized B-type Kadomtsev-Petviashvili equation and its modified counterpart

Abstract A class of exact Pfaffian solutions to a (3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation is obtained. A set of sufficient conditions consisting of systems of linear partial differential equations involving free parameters is generated to guarantee that the Pfaffian solves the equation. A Backlund transformation of the equation is presented. The equation is transformed into a set of bilinear equations, and a few classes of traveling wave solutions, rational solutions and Pfaffian solutions to the extended bilinear equations are furnished. Examples of the Pfaffian solutions are explicitly computed, and a few solutions are plotted.

[1]  G. Post On Bäcklund transformations and identities in bilinear form , 1990 .

[2]  Michio Jimbo,et al.  Method for Generating Discrete Soliton Equations. I , 1983 .

[3]  A. Scott Propagation of magnetic flux on a long Josephson tunnel junction , 1970 .

[4]  Eduardo R. Caianiello,et al.  Combinatorics and renormalization in quantum field theory , 1973 .

[5]  Ryogo Hirota,et al.  Soliton Solutions to the BKP Equations. I. the Pfaffian technique , 1989 .

[6]  Symmetries of Discrete Systems , 2003, nlin/0309058.

[7]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[8]  Ryogo Hirota,et al.  Soliton solutions to the BKP equations. II: The integral equation , 1989 .

[9]  Wen-Xiu Ma,et al.  Complexiton solutions of the Toda lattice equation , 2004 .

[10]  Yi Zhang,et al.  Hirota bilinear equations with linear subspaces of solutions , 2012, Appl. Math. Comput..

[11]  Wen-Xiu Ma,et al.  Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation , 2011, Appl. Math. Comput..

[12]  Wenxiu Ma,et al.  A second Wronskian formulation of the Boussinesq equation , 2009 .

[13]  Robert M. Miura,et al.  Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation , 1968 .

[14]  Akira Nakamura,et al.  A Bilinear N-Soliton Formula for the KP Equation , 1989 .

[15]  Wen-Xiu Ma,et al.  Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources , 2005 .

[16]  A. Wazwaz New higher-dimensional fifth-order nonlinear equations with multiple soliton solutions , 2011 .

[17]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[18]  Masaki Kashiwara,et al.  Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type , 1982 .

[19]  Bilinear forms and Backlund transformations of the perturbation systems [rapid communication] , 2005 .

[20]  Abdul-Majid Wazwaz,et al.  A new (2+1)-dimensional Korteweg–de Vries equation and its extension to a new (3+1)-dimensional Kadomtsev–Petviashvili equation , 2011 .

[21]  Wenxiu Ma,et al.  A multiple exp-function method for nonlinear differential equations and its application , 2010, 1010.3324.

[22]  Wen-Xiu Ma,et al.  Computers and Mathematics with Applications Linear Superposition Principle Applying to Hirota Bilinear Equations , 2022 .

[23]  Wen-Xiu Ma,et al.  Wronskian solutions of the Boussinesq equation—solitons, negatons, positons and complexitons , 2007 .

[24]  Jarmo Hietarinta,et al.  Hirota's bilinear method and soliton solutions , 2005 .

[25]  Wen-Xiu Ma,et al.  Complexiton solutions to the Korteweg–de Vries equation , 2002 .

[26]  G. Lamb Analytical Descriptions of Ultrashort Optical Pulse Propagation in a Resonant Medium , 1971 .

[27]  A. Seeger Theorie der Gitterfehlstellen , 1955 .

[28]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[29]  T. W. Barnard 2 N π Ultrashort Light Pulses , 1973 .