Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules

In this work, we demonstrate the use of high performance nanostructured PbTe-based materials in high conversion efficiency thermoelectric modules. We fabricated the samples of PbTe–2% MgTe doped with 4% Na and PbTe doped with 0.2% PbI2 with high thermoelectric figure of merit (ZT) and sintered them with Co–Fe diffusion barriers for use as p- and n-type thermoelectric legs, respectively. Transmission electron microscopy of the PbTe legs reveals two shapes of nanostructures, disk-like and spherical. The reduction in lattice thermal conductivity through nanostructuring gives a ZT of ∼1.8 at 810 K for p-type PbTe and ∼1.4 at 750 K for n-type PbTe. Nanostructured PbTe-based module and segmented-leg module using Bi2Te3 and nanostructured PbTe were fabricated and tested with hot-side temperatures up to 873 K in a vacuum. The maximum conversion efficiency of ∼8.8% for a temperature difference (ΔT) of 570 K and ∼11% for a ΔT of 590 K have been demonstrated in the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module, respectively. Three-dimensional finite-element simulations predict that the maximum conversion efficiency of the nanostructured PbTe-based module and segmented Bi2Te3/nanostructured PbTe module reaches 12.2% for a ΔT of 570 K and 15.6% for a ΔT of 590 K respectively, which could be achieved if the electrical and thermal contact between the nanostructured PbTe legs and Cu interconnecting electrodes is further improved.

[1]  M. Kanatzidis,et al.  All-scale hierarchical thermoelectrics: MgTe in PbTe facilitates valence band convergence and suppresses bipolar thermal transport for high performance , 2013 .

[2]  Zhifeng Ren,et al.  Recent progress of half-Heusler for moderate temperature thermoelectric applications , 2013 .

[3]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: low thermal conductivity and high thermopower in doped SnS , 2014 .

[4]  M. Kanatzidis,et al.  Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3 , 2014, Nature Communications.

[5]  M. Kanatzidis,et al.  Nanostructures boost the thermoelectric performance of PbS. , 2011, Journal of the American Chemical Society.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Ctirad Uher,et al.  Large enhancements in the thermoelectric power factor of bulk PbTe at high temperature by synergistic nanostructuring. , 2008, Angewandte Chemie.

[8]  M. Kanatzidis,et al.  Enhanced thermoelectric properties of p-type nanostructured PbTe–MTe (M = Cd, Hg) materials , 2013 .

[9]  Heng Wang,et al.  Lead telluride alloy thermoelectrics , 2011 .

[10]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[11]  Vinayak P. Dravid,et al.  High performance bulk thermoelectrics via a panoscopic approach , 2013 .

[12]  Kenji Koga,et al.  Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. , 2015, Nature materials.

[13]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[14]  V. S. Vaidhyanathan,et al.  Transport phenomena , 2005, Experientia.

[15]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[16]  河本 邦仁,et al.  Thermoelectric Nanomaterials: Materials Design and Applications , 2013 .

[17]  Ctirad Uher,et al.  Spinodal decomposition and nucleation and growth as a means to bulk nanostructured thermoelectrics: enhanced performance in Pb(1-x)Sn(x)Te-PbS. , 2007, Journal of the American Chemical Society.

[18]  M. Kanatzidis,et al.  High thermoelectric figure of merit in nanostructured p-type PbTe–MTe (M = Ca, Ba) , 2011 .

[19]  C. Koch,et al.  High-Performance Three-Stage Cascade Thermoelectric Devices with 20% Efficiency , 2015, Journal of Electronic Materials.

[20]  Emil Sandoz-Rosado,et al.  Robust Finite Element Model for the Design of Thermoelectric Modules , 2010 .

[21]  George S. Nolas,et al.  Semiconducting Ge clathrates: Promising candidates for thermoelectric applications , 1998 .

[22]  Ryoji Funahashi,et al.  Oxide Thermoelectric Materials: A Nanostructuring Approach , 2010 .

[23]  Terry Hendricks,et al.  Electrical, Thermal, and Mechanical Characterization of Novel Segmented-Leg Thermoelectric Modules , 2011 .

[24]  Hsin Wang,et al.  Determination of Thermoelectric Module Efficiency: A Survey , 2014, Journal of Electronic Materials.

[25]  Qingjie Zhang,et al.  Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds , 2012, Nanomaterials.

[26]  M. Ohta,et al.  Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides , 2015, Materials.

[27]  Takahiro Ochi,et al.  Development of Skutterudite Thermoelectric Materials and Modules , 2012, Journal of Electronic Materials.

[28]  M. Kanatzidis,et al.  In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity. , 2010, Nano letters.

[29]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[30]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[31]  Zhifeng Ren,et al.  Skutterudite Unicouple Characterization for Energy Harvesting Applications , 2013 .

[32]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[33]  R. W. Ure,et al.  Calculation of Efficiency of Thermoelectric Devices , 1960 .

[34]  Markus Bartel,et al.  Multiphysics Simulation of Thermoelectric Systems for Comparison with Experimental Device Performance , 2009 .

[35]  Yaniv Gelbstein,et al.  Functional Graded Germanium–Lead Chalcogenide‐Based Thermoelectric Module for Renewable Energy Applications , 2015 .

[36]  D. Rowe Thermoelectrics Handbook , 2005 .

[37]  Tsunehiro Takeuchi,et al.  An Oxide Single Crystal with High Thermoelectric Performance in Air , 2000 .

[38]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[39]  G. J. Snyder,et al.  Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material , 2011 .

[40]  Ichiro Terasaki,et al.  Large thermoelectric power in NaCo 2 O 4 single crystals , 1997 .

[41]  J. Fleurial Proceedings of 15th International Conference on Thermoelectrics , 1996 .

[42]  Michihiro Ohta,et al.  Three-Dimensional Finite-Element Simulation for a Thermoelectric Generator Module , 2015, Journal of Electronic Materials.

[43]  G. J. Snyder,et al.  Thermoelectric performance of lanthanum telluride produced via mechanical alloying , 2008 .

[44]  M. Kanatzidis,et al.  Enhanced average thermoelectric figure of merit of n-type PbTe1−xIx–MgTe , 2015 .

[45]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[46]  Vinayak P. Dravid,et al.  The panoscopic approach to high performance thermoelectrics , 2014 .

[47]  G. J. Snyder,et al.  Development of high efficiency segmented thermoelectric unicouples , 2001, Proceedings ICT2001. 20 International Conference on Thermoelectrics (Cat. No.01TH8589).

[48]  G. J. Snyder,et al.  Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications , 2014, Journal of Materials Science.

[49]  Ryoji Funahashi,et al.  Thermoelectric Ceramics for Energy Harvesting , 2013 .

[50]  D. K. Aswal,et al.  Development of low resistance electrical contacts for thermoelectric devices based on n-type PbTe and p-type TAGS-85 ((AgSbTe2)0.15(GeTe)0.85) , 2009 .

[51]  M. Kanatzidis,et al.  Seeing is believing: weak phonon scattering from nanostructures in alkali metal-doped lead telluride. , 2012, Nano letters.

[52]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[53]  David Michael Rowe,et al.  Modules, Systems, and Applications in Thermoelectrics , 2012 .

[54]  M. Kanatzidis,et al.  Microstructure‐Lattice Thermal Conductivity Correlation in Nanostructured PbTe0.7S0.3 Thermoelectric Materials , 2010 .

[55]  Andrew G. Glen,et al.  APPL , 2001 .

[56]  M. Kanatzidis,et al.  On the origin of increased phonon scattering in nanostructured PbTe based thermoelectric materials. , 2010, Journal of the American Chemical Society.

[57]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[58]  M. Kanatzidis,et al.  Enhancement of Thermoelectric Figure of Merit by the Insertion of MgTe Nanostructures in p‐type PbTe Doped with Na2Te , 2012 .

[59]  A. Maignan,et al.  From oxides to selenides and sulfides: The richness of the CdI2 type crystallographic structure for thermoelectric properties , 2013 .

[60]  Ryan Maloney,et al.  Conversion efficiency of skutterudite-based thermoelectric modules. , 2014, Physical chemistry chemical physics : PCCP.

[61]  A. Yamamoto,et al.  Measurement and simulation of thermoelectric efficiency for single leg. , 2015, The Review of scientific instruments.

[62]  M. Kanatzidis,et al.  Improvement in the Thermoelectric Figure of Merit by La/Ag Cosubstitution in PbTe , 2009 .

[63]  Fei Ren,et al.  Nanostructured Thermoelectric Materials and High-Efficiency Power-Generation Modules , 2007 .

[64]  Kenneth McEnaney,et al.  High thermoelectric conversion efficiency of MgAgSb-based material with hot-pressed contacts , 2015 .

[65]  M. Kanatzidis,et al.  Exploring resonance levels and nanostructuring in the PbTe-CdTe system and enhancement of the thermoelectric figure of merit. , 2010, Journal of the American Chemical Society.

[66]  Gang Chen,et al.  Transmission electron microscopy study of Pb-depleted disks in PbTe-based alloys , 2011 .

[67]  A. Yamamoto,et al.  High-performance thermoelectric mineral Cu12−xNixSb4S13 tetrahedrite , 2013 .

[68]  Hui Wang,et al.  Stronger phonon scattering by larger differences in atomic mass and size in p-type half-Heuslers Hf1−xTixCoSb0.8Sn0.2 , 2012 .

[69]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[70]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[71]  M. Ohta,et al.  High-performance thermoelectric minerals: Colusites Cu26V2M6S32 (M = Ge, Sn) , 2014 .

[72]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[73]  T. Nakayama,et al.  Phonon-glass electron-crystal thermoelectric clathrates : Experiments and theory , 2014, 1402.5756.

[74]  G. J. Snyder,et al.  Interfacial Reaction Between Nb Foil and n-Type PbTe Thermoelectric Materials During Thermoelectric Contact Fabrication , 2014, Journal of Electronic Materials.

[75]  Emil Sandoz-Rosado,et al.  Experimental Characterization of Thermoelectric Modules and Comparison with Theoretical Models for Power Generation , 2009 .