Na‐Ion Batteries for Large Scale Applications: A Review on Anode Materials and Solid Electrolyte Interphase Formation

The urgent need for optimizing the available energy through smart grids and efficient large‐scale energy storage systems is pushing the construction and deployment of Li‐ion batteries in the MW range which, in the long term, are expected to hit the GW dimension while demanding over 1000 ton of positive active material per system. This amount of Li‐based material is equivalent to almost 1% of current Li consumption and can strongly influence the evolution of the lithium supply and cost. Given this uncertainty, it becomes mandatory to develop an energy storage technology that depends on almost infinite and widespread resources: Na‐ion batteries are the best technology for large‐scale applications. With small working cells in the market that cannot compete in cost ($/W h) with commercial Li‐ion batteries, the consolidation of Na‐ion batteries mainly depends on increasing their energy density and stability, the negative electrodes being at the heart of these two requirements. Promising Na‐based negative electrodes for large‐scale battery applications are reviewed, along with the study of the solid electrolyte interphase formed in the anode surface, which is at the origin of most of the stability problems.

[1]  Yong Lu,et al.  Advanced Organic Electrode Materials for Rechargeable Sodium‐Ion Batteries , 2017 .

[2]  Xiaogang Li,et al.  Three-dimensional porous graphene-encapsulated CNT@SnO2 composite for high-performance lithium and sodium storage , 2017 .

[3]  S. Choudhury,et al.  Highly Stable Sodium Batteries Enabled by Functional Ionic Polymer Membranes , 2017, Advanced materials.

[4]  Xifei Li,et al.  SnO 2 particles anchored on N-doped graphene surface as sodium-ion battery anode with enhanced electrochemical capability , 2017 .

[5]  Feng Wu,et al.  Density Functional Theory Research into the Reduction Mechanism for the Solvent/Additive in a Sodium-Ion Battery. , 2017, ChemSusChem.

[6]  G. Cui,et al.  An α-CrPO4-type NaV3(PO4)3 anode for sodium-ion batteries with excellent cycling stability and the exploration of sodium storage behavior , 2017 .

[7]  Ya‐Xia Yin,et al.  Novel P2-type Na2/3Ni1/6Mg1/6Ti2/3O2 as an anode material for sodium-ion batteries. , 2017, Chemical communications.

[8]  Xifei Li,et al.  Porous graphene anchored with Sb/SbOx as sodium-ion battery anode with enhanced reversible capacity and cycle performance , 2017 .

[9]  Daeho Lee,et al.  Sb-AlC0.75-C composite anodes for high-performance sodium-ion batteries , 2017 .

[10]  Yang‐Kook Sun,et al.  The Application of Metal Sulfides in Sodium Ion Batteries , 2017 .

[11]  G. Cui,et al.  Fabrication of transition metal selenides and their applications in energy storage , 2017 .

[12]  M. Wagemaker,et al.  Thermodynamics and Kinetics of Na-Ion Insertion into Hollandite-TiO2 and O3-Layered NaTiO2: An Unexpected Link between Two Promising Anode Materials for Na-Ion Batteries , 2017 .

[13]  Kangli Wang,et al.  A two-dimensional hybrid of SbOx nanoplates encapsulated by carbon flakes as a high performance sodium storage anode , 2017 .

[14]  Hyun Park,et al.  Hollow SnO2@carbon core–shell spheres stabilized on reduced graphene oxide for high-performance sodium-ion batteries , 2017 .

[15]  Yi Cui,et al.  Shape-Controlled TiO2 Nanocrystals for Na-Ion Battery Electrodes: The Role of Different Exposed Crystal Facets on the Electrochemical Properties. , 2017, Nano letters.

[16]  Gongzheng Yang,et al.  Ultrafine Sb nanoparticles embedded in an amorphous carbon matrix for high-performance sodium ion anode materials , 2016 .

[17]  H. Xin,et al.  In situ TEM probing of crystallization form-dependent sodiation behavior in ZnO nanowires for sodium-ion batteries , 2016 .

[18]  Qi Li,et al.  Electrochemical performance of fulvic acid-based electrospun hard carbon nanofibers as promising anodes for sodium-ion batteries , 2016 .

[19]  Yang Xu,et al.  Understanding the Orderliness of Atomic Arrangement toward Enhanced Sodium Storage , 2016 .

[20]  D. Brandell,et al.  Investigating the Interfacial Chemistry of Organic Electrodes in Li- and Na-Ion Batteries , 2016 .

[21]  Fengmin Wu,et al.  A high capacity NiFe2O4/RGO nanocomposites as superior anode materials for sodium-ion batteries , 2016 .

[22]  S. Gosavi,et al.  Nickel-titanium oxide as a novel anode material for rechargeable sodium-ion batteries , 2016 .

[23]  Huaihe Song,et al.  Amorphous Fe2O3/Graphene Composite Nanosheets with Enhanced Electrochemical Performance for Sodium-Ion Battery. , 2016, ACS applied materials & interfaces.

[24]  K. Kubota,et al.  Effect of Hexafluorophosphate and Fluoroethylene Carbonate on Electrochemical Performance and the Surface Layer of Hard Carbon for Sodium-Ion Batteries , 2016 .

[25]  Ting Lu,et al.  One-step microwave-assisted synthesis of Sb2O3/reduced graphene oxide composites as advanced anode materials for sodium-ion batteries , 2016 .

[26]  N. Sharma,et al.  Size and Composition Effects in Sb-Carbon Nanocomposites for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[27]  F. Nobili,et al.  Direct observation of electronic conductivity transitions and solid electrolyte interphase stability of Na2Ti3O7 electrodes for Na-ion batteries , 2016 .

[28]  Oliver Pecher,et al.  Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. , 2016, Chemical communications.

[29]  Clement Bommier,et al.  New Paradigms on the Nature of Solid Electrolyte Interphase Formation and Capacity Fading of Hard Carbon Anodes in Na‐Ion Batteries , 2016 .

[30]  Haegyeom Kim,et al.  Recent Progress in Electrode Materials for Sodium‐Ion Batteries , 2016 .

[31]  Xiangwu Zhang,et al.  Centrifugally-spun carbon microfibers and porous carbon microfibers as anode materials for sodium-ion batteries , 2016 .

[32]  Seungho Yu,et al.  Bismuth oxide as a high capacity anode material for sodium-ion batteries. , 2016, Chemical communications.

[33]  Yong‐Sheng Hu,et al.  Hard Carbon Microtubes Made from Renewable Cotton as High‐Performance Anode Material for Sodium‐Ion Batteries , 2016 .

[34]  H. Xin,et al.  Probing microstructure and phase evolution of α-MoO3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy , 2016 .

[35]  Sebastien Martinet,et al.  Hard carbon derived from cellulose as anode for sodium ion batteries: Dependence of electrochemical properties on structure , 2016 .

[36]  Yongchang Liu,et al.  CuO Quantum Dots Embedded in Carbon Nanofibers as Binder-Free Anode for Sodium Ion Batteries with Enhanced Properties. , 2016, Small.

[37]  S. Manzhos,et al.  Exploring the sodium storage mechanism in disodium terephthalate as anode for organic battery using density-functional theory calculations , 2016 .

[38]  Litao Yan,et al.  Ultrafine Nb2O5 Nanocrystal Coating on Reduced Graphene Oxide as Anode Material for High Performance Sodium Ion Battery. , 2016, ACS applied materials & interfaces.

[39]  A. Manthiram,et al.  High-Performance Red P-Based P–TiP2–C Nanocomposite Anode for Lithium-Ion and Sodium-Ion Storage , 2016 .

[40]  Xiaolin Liu,et al.  Hard Carbon Fibers Pyrolyzed from Wool as High-Performance Anode for Sodium-Ion Batteries , 2016 .

[41]  Dongfang Yang,et al.  Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries , 2016 .

[42]  Shenglin Xiong,et al.  Mental-organic framework derived CuO hollow spheres as high performance anodes for sodium ion battery , 2016 .

[43]  Jun Lu,et al.  High Capacity of Hard Carbon Anode in Na-Ion Batteries Unlocked by POx Doping , 2016 .

[44]  Ming Lei,et al.  Yolk-Shell Sn@C Eggette-like Nanostructure: Application in Lithium-Ion and Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[45]  L. Madec,et al.  Impact of the salts and solvents on the SEI formation in Sb/Na batteries: An XPS analysis , 2016 .

[46]  Jiaqiang Huang,et al.  Enhanced conversion reaction kinetics in low crystallinity SnO2/CNT anodes for Na-ion batteries , 2016 .

[47]  Yonggang Yao,et al.  Ultra‐Thick, Low‐Tortuosity, and Mesoporous Wood Carbon Anode for High‐Performance Sodium‐Ion Batteries , 2016 .

[48]  Na Xu,et al.  Half‐Cell and Full‐Cell Applications of Highly Stable and Binder‐Free Sodium Ion Batteries Based on Cu3P Nanowire Anodes , 2016 .

[49]  K. Nakanishi,et al.  Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes , 2016 .

[50]  A. J. Bhattacharyya,et al.  Composite of few-layer MoO3 nanosheets with graphene as a high performance anode for sodium-ion batteries , 2016 .

[51]  Mingdeng Wei,et al.  Hierarchical rutile TiO2 with mesocrystalline structure for Li-ion and Na-ion storage , 2016 .

[52]  Yan Yu,et al.  Superior Sodium Storage in Na2Ti3O7 Nanotube Arrays through Surface Engineering , 2016 .

[53]  Zaiping Guo,et al.  Na2 Ti6 O13 Nanorods with Dominant Large Interlayer Spacing Exposed Facet for High-Performance Na-Ion Batteries. , 2016, Small.

[54]  Bin Wu,et al.  In situ quantization of ferroferric oxide embedded in 3D microcarbon for ultrahigh performance sodium-ion batteries , 2016 .

[55]  Zonghai Chen,et al.  Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. , 2016, Nano letters.

[56]  Haizhu Sun,et al.  Shale-like Co3O4 for high performance lithium/sodium ion batteries , 2016 .

[57]  Shouwu Guo,et al.  Enhanced Performance by Enlarged Nano-pores of Holly Leaf-derived Lamellar Carbon for Sodium-ion Battery Anode , 2016, Scientific Reports.

[58]  Yong‐Sheng Hu,et al.  Novel 1.5 V anode materials, ATiOPO4 (A = NH4, K, Na), for room-temperature sodium-ion batteries , 2016 .

[59]  Hun‐Gi Jung,et al.  Electrochemical Investigations on TiO2-B Nanowires as a Promising High Capacity Anode for Sodium-ion Batteries , 2016 .

[60]  Marc D. Walter,et al.  Inexpensive colloidal SnSb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries , 2016 .

[61]  T. Zhai,et al.  Ultrafine potassium titanate nanowires: a new Ti-based anode for sodium ion batteries. , 2016, Chemical communications.

[62]  Hui Xu,et al.  The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries , 2016 .

[63]  Richard Dronskowski,et al.  Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium- and Sodium-Ion Batteries with Excellent Cycling Properties. , 2016, Angewandte Chemie.

[64]  Yongchang Liu,et al.  MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries. , 2016, Nano letters.

[65]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[66]  Chao Luo,et al.  Building Self-Healing Alloy Architecture for Stable Sodium-Ion Battery Anodes: A Case Study of Tin Anode Materials. , 2016, ACS applied materials & interfaces.

[67]  D. Brandell,et al.  Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes , 2016, Materials.

[68]  J. Akimoto,et al.  Synthesis and electrochemical sodium and lithium insertion properties of sodium titanium oxide with the tunnel type structure , 2016 .

[69]  Shuling Liu,et al.  Solvothermal preparation of tin phosphide as a long-life anode for advanced lithium and sodium ion batteries , 2016 .

[70]  Haiyan Lu,et al.  Investigation of the Effect of Fluoroethylene Carbonate Additive on Electrochemical Performance of Sb-Based Anode for Sodium-Ion Batteries , 2016 .

[71]  J. L. Amo,et al.  Identification of the critical synthesis parameters for enhanced cycling stability of Na-ion anode material Na2Ti3O7 , 2016 .

[72]  Zaiping Guo,et al.  Highly Ordered Dual Porosity Mesoporous Cobalt Oxide for Sodium‐Ion Batteries , 2016 .

[73]  I. Kim,et al.  Sb/Cu2Sb-TiC-C Composite Anode for High-Performance Sodium-Ion Batteries. , 2016, Journal of nanoscience and nanotechnology.

[74]  M. Armand,et al.  Carbodiimides: new materials applied as anode electrodes for sodium and lithium ion batteries , 2016 .

[75]  C. Gatti,et al.  Playing with isomerism and N substitution in pentalenedione derivatives for organic electrode batteries: how high are the stakes? , 2016, Physical chemistry chemical physics : PCCP.

[76]  W. Luo,et al.  Na-Ion Battery Anodes: Materials and Electrochemistry. , 2016, Accounts of chemical research.

[77]  Ramaraju Bendi,et al.  Metal-organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications. , 2016, Chemical communications.

[78]  Jun Liu,et al.  Uniform yolk–shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries , 2015 .

[79]  Yu Zhu,et al.  Tuning SEI formation on nanoporous carbon–titania composite sodium ion batteries anodes and performance with subtle processing changes , 2015 .

[80]  Sang-Min Lee,et al.  ZnSb/C composite anode in additive free electrolyte for sodium ion batteries , 2015 .

[81]  J. Santos-Peña,et al.  An electrochemical study of Fe1.18Sb1.82 as negative electrode for sodium ion batteries , 2015 .

[82]  J. Tarascon,et al.  Taking steps forward in understanding the electrochemical behavior of Na2Ti3O7 , 2015 .

[83]  Weidong Zhou,et al.  Reduced Graphene Oxide/Tin-Antimony Nanocomposites as Anode Materials for Advanced Sodium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[84]  Yan Yu,et al.  Nanoconfined antimony in sulfur and nitrogen co-doped three-dimensionally (3D) interconnected macroporous carbon for high-performance sodium-ion batteries , 2015 .

[85]  Guangyuan Zheng,et al.  A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. , 2015, Nature nanotechnology.

[86]  J. Liang,et al.  Phosphorus Nanoparticles Encapsulated in Graphene Scrolls as a High‐Performance Anode for Sodium‐Ion Batteries , 2015 .

[87]  Huakun Liu,et al.  Cobalt phosphide as a new anode material for sodium storage , 2015 .

[88]  J. Carrasco,et al.  Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers , 2015 .

[89]  Xin-bo Zhang,et al.  Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries , 2015 .

[90]  Yanguang Li,et al.  Nanostructured CuP2/C composites as high-performance anode materials for sodium ion batteries , 2015 .

[91]  Yutao Li,et al.  Na0.56Ti1.72Fe0.28O4: a novel anode material for Na-ion batteries , 2015 .

[92]  Hui Zhu,et al.  Humic acid as promising organic anodes for lithium/sodium ion batteries. , 2015, Chemical communications.

[93]  Huakun Liu,et al.  Ball-milled FeP/graphite as a low-cost anode material for the sodium-ion battery , 2015 .

[94]  Guoxiu Wang,et al.  Antimony-Carbon-Graphene Fibrous Composite as Freestanding Anode Materials for Sodium-ion Batteries , 2015 .

[95]  Jia-ling Wang,et al.  A phosphorus/N-doped carbon nanofiber composite as an anode material for sodium-ion batteries , 2015 .

[96]  Yongchang Liu,et al.  Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries , 2015, Nano Research.

[97]  D. Deng,et al.  Amorphous Bimetallic Co3Sn2 Nanoalloys Are Better Than Crystalline Counterparts for Sodium Storage , 2015 .

[98]  Xianluo Hu,et al.  Self-wrapped Sb/C nanocomposite as anode material for High-performance sodium-ion batteries , 2015 .

[99]  Lin Gu,et al.  Three-dimensionally interconnected nickel–antimony intermetallic hollow nanospheres as anode material for high-rate sodium-ion batteries , 2015 .

[100]  Hong Li,et al.  Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries , 2015, Science Advances.

[101]  Lifang Jiao,et al.  Update on anode materials for Na-ion batteries , 2015 .

[102]  Xiaobo Ji,et al.  Cypress leaf-like Sb as anode material for high-performance sodium-ion batteries , 2015 .

[103]  Xiulei Ji,et al.  New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon. , 2015, Nano letters.

[104]  S. Jung,et al.  Important Role of Functional Groups for Sodium Ion Intercalation in Expanded Graphite , 2015 .

[105]  A. Manthiram,et al.  VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries , 2015 .

[106]  Mingdeng Wei,et al.  Iso-Oriented Anatase TiO2 Mesocages as a High Performance Anode Material for Sodium-Ion Storage , 2015, Scientific Reports.

[107]  Jun Wang,et al.  Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography , 2015, Nature Communications.

[108]  Seungchul Kim,et al.  Unraveling the Atomistic Sodiation Mechanism of Black Phosphorus for Sodium Ion Batteries by First-Principles Calculations , 2015 .

[109]  Xiaobo Ji,et al.  Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries , 2015 .

[110]  L. Shaw,et al.  Advances and challenges of sodium ion batteries as post lithium ion batteries , 2015 .

[111]  M. Winter,et al.  Low-Cost Orthorhombic Nax[FeTi]O4 (x = 1 and 4/3) Compounds as Anode Materials for Sodium-Ion Batteries , 2015 .

[112]  Hyuk-Sang Kwon,et al.  High-Performance Sb/Sb2 O3 Anode Materials Using a Polypyrrole Nanowire Network for Na-Ion Batteries. , 2015, Small.

[113]  J. Hassoun,et al.  A rechargeable sodium-ion battery using a nanostructured Sb–C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode , 2015 .

[114]  Xin Liu,et al.  In situ synthesis of Na2Ti7O15 nanotubes on a Ti net substrate as a high performance anode for Na-ion batteries. , 2015, Chemical communications.

[115]  Xiaobo Ji,et al.  Cathodically induced antimony for rechargeable Li-ion and Na-ion batteries: The influences of hexagonal and amorphous phase , 2015 .

[116]  A. Manthiram,et al.  Cu 6 Sn 5 –TiC–C nanocomposite anodes for high-performance sodium-ion batteries , 2015 .

[117]  Clement Bommier,et al.  Recent Development on Anodes for Na‐Ion Batteries , 2015 .

[118]  Maria Rosa Palacín,et al.  On the high and low temperature performances of Na-ion battery materials: Hard carbon as a case study , 2015 .

[119]  Hua Zhang,et al.  Two-dimensional transition metal dichalcogenide nanosheet-based composites. , 2015, Chemical Society reviews.

[120]  Zhichuan J. Xu,et al.  Recent developments in electrode materials for sodium-ion batteries , 2015 .

[121]  Arumugam Manthiram,et al.  High-Capacity, High-Rate Bi–Sb Alloy Anodes for Lithium-Ion and Sodium-Ion Batteries , 2015 .

[122]  L. Stievano,et al.  Performance and mechanism of FeSb2 as negative electrode for Na-ion batteries , 2015 .

[123]  Young Jin Kim,et al.  Interfacial architectures based on a binary additive combination for high-performance Sn4P3 anodes in sodium-ion batteries , 2015 .

[124]  W. Han,et al.  Enhanced Electrochemical Performance of Fe0.74Sn5@Reduced Graphene Oxide Nanocomposite Anodes for Both Li-Ion and Na-Ion Batteries. , 2015, ACS applied materials & interfaces.

[125]  T. Rojo,et al.  Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis. , 2015, ACS applied materials & interfaces.

[126]  E. D. Jackson,et al.  Electrochemical performance of electrodeposited Zn4Sb3 films for sodium-ion secondary battery anodes. , 2015, ACS applied materials & interfaces.

[127]  Katja Kretschmer,et al.  Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries , 2015 .

[128]  Leigang Xue,et al.  Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries , 2015 .

[129]  Zelang Jian,et al.  A new low-voltage plateau of Na3V2(PO4)3 as an anode for Na-ion batteries. , 2015, Chemical communications.

[130]  Masahiro Shimizu,et al.  Nb-doped rutile TiO₂: a potential anode material for Na-ion battery. , 2015, ACS applied materials & interfaces.

[131]  Tao Gao,et al.  Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries. , 2015, ACS nano.

[132]  Xiaobo Ji,et al.  Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries , 2015 .

[133]  A. Glushenkov,et al.  Phosphorus–carbon nanocomposite anodes for lithium-ion and sodium-ion batteries , 2015 .

[134]  Yong Lei,et al.  Extended π-conjugated system for fast-charge and -discharge sodium-ion batteries. , 2015, Journal of the American Chemical Society.

[135]  Erik J. Berg,et al.  Understanding the Interaction of the Carbonates and Binder in Na-Ion Batteries: A Combined Bulk and Surface Study , 2015 .

[136]  Marc D. Walter,et al.  Inexpensive Antimony Nanocrystals and Their Composites with Red Phosphorus as High-Performance Anode Materials for Na-ion Batteries , 2015, Scientific Reports.

[137]  S. Dou,et al.  A new, cheap, and productive FeP anode material for sodium-ion batteries. , 2015, Chemical communications.

[138]  Chang Ming Li,et al.  Exploration of Na(2.65)Ti(3.35)Fe(0.65)O9 as anode materials for Na-ion batteries. , 2015, Chemical communications.

[139]  Yuhao Lu,et al.  Low-surface-area hard carbon anode for na-ion batteries via graphene oxide as a dehydration agent. , 2015, ACS applied materials & interfaces.

[140]  Yunhui Huang,et al.  Carbon coated K(0.8)Ti(1.73)Li(0.27)O4: a novel anode material for sodium-ion batteries with a long cycle life. , 2015, Chemical communications.

[141]  Marc D. Walter,et al.  Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb. , 2015, Nanoscale.

[142]  Xin Liu,et al.  Stable anode performance of vanadium oxide hydrate semi-microspheres and their graphene based composite microspheres in sodium-ion batteries. , 2015, Dalton transactions.

[143]  L. Giebeler,et al.  Na–Sb–Sn ternary phase diagram at room temperature for potential anode materials in sodium-ion batteries , 2014 .

[144]  N. Sharma,et al.  Synthetic, Structural, and Electrochemical Study of Monoclinic Na4Ti5O12 as a Sodium-Ion Battery Anode Material , 2014 .

[145]  A. Manthiram,et al.  Effect of TiC addition on SnSb-C composite anodes for sodium-ion batteries , 2014 .

[146]  Charles E. Johnson,et al.  The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies , 2014 .

[147]  L. David,et al.  Reduced Graphene Oxide Paper Electrode: Opposing Effect of Thermal Annealing on Li and Na Cyclability , 2014 .

[148]  Liquan Chen,et al.  Experimental visualization of the diffusion pathway of sodium ions in the Na3[Ti2P2O10F] anode for sodium-ion battery , 2014, Scientific Reports.

[149]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[150]  D. Mitlin,et al.  Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li , 2014 .

[151]  D. Choi,et al.  Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. , 2014, Nano letters.

[152]  Dong‐Wan Kim,et al.  Electrospun Cu/Sn/C nanocomposite fiber anodes with superior usable lifetime for lithium- and sodium-ion batteries. , 2014, Chemistry, an Asian journal.

[153]  Dong-Hwa Seo,et al.  Biologically inspired pteridine redox centres for rechargeable batteries , 2014, Nature Communications.

[154]  Jun Liu,et al.  Facile synthesis of highly porous Ni-Sn intermetallic microcages with excellent electrochemical performance for lithium and sodium storage. , 2014, Nano letters.

[155]  V. Battaglia,et al.  Toward high specific capacity and high cycling stability of pure tin nanoparticles with conductive polymer binder for sodium ion batteries , 2014 .

[156]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[157]  Xiulei Ji,et al.  Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements , 2014 .

[158]  D. Brandell,et al.  Benzenediacrylates as organic battery electrode materials: Na versus Li , 2014 .

[159]  Zaiping Guo,et al.  SnSb@carbon nanocable anchored on graphene sheets for sodium ion batteries , 2014, Nano Research.

[160]  K. Edström,et al.  Stability of organic Na-ion battery electrode materials: The case of disodium pyromellitic diimidate , 2014 .

[161]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[162]  K. Kubota,et al.  Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries , 2014 .

[163]  M. Hayashi,et al.  Sodium-Ion Insertion/Extraction Properties of Sn-Co Anodes and Na Pre-Doped Sn-Co Anodes , 2014 .

[164]  A. Manthiram,et al.  High-performance FeSb-TiC-C nanocomposite anodes for sodium-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[165]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[166]  S. Dou,et al.  Sn4+xP3 @ Amorphous Sn‐P Composites as Anodes for Sodium‐Ion Batteries with Low Cost, High Capacity, Long Life, and Superior Rate Capability , 2014, Advanced materials.

[167]  Yongil Kim,et al.  Tin Phosphide as a Promising Anode Material for Na‐Ion Batteries , 2014, Advanced materials.

[168]  Jun Chen,et al.  All Organic Sodium‐Ion Batteries with Na 4 C 8 H 2 O 6 , 2014 .

[169]  D. Bresser,et al.  Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes , 2014 .

[170]  Gyeong Sook Bang,et al.  Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. , 2014, ACS applied materials & interfaces.

[171]  G. F. Ortiz,et al.  Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium , 2014 .

[172]  Yuyan Shao,et al.  Controlling SEI Formation on SnSb‐Porous Carbon Nanofibers for Improved Na Ion Storage , 2014, Advanced materials.

[173]  Charles E. Johnson,et al.  The reaction mechanism of FeSb(2) as anode for sodium-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[174]  M. Doeff,et al.  Lepidocrocite-type Layered Titanate Structures: New Lithium and Sodium Ion Intercalation Anode Materials , 2014 .

[175]  D. Bresser,et al.  Anatase TiO2 nanoparticles for high power sodium-ion anodes , 2014 .

[176]  Xiaogang Zhang,et al.  Prussian blue analogues: a new class of anode materials for lithium ion batteries , 2014 .

[177]  Hyungyeon Cha,et al.  Nitrogen-doped open pore channeled graphene facilitating electrochemical performance of TiO2 nanoparticles as an anode material for sodium ion batteries , 2014 .

[178]  H. Oji,et al.  Phosphorus Electrodes in Sodium Cells: Small Volume Expansion by Sodiation and the Surface‐Stabilization Mechanism in Aprotic Solvent , 2014 .

[179]  J. Gracio,et al.  Diamond-like carbon (DLC) films as electrochemical electrodes , 2014 .

[180]  Do-Hwan Nam,et al.  Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries , 2014 .

[181]  Gurpreet Singh,et al.  MoS2/graphene composite paper for sodium-ion battery electrodes. , 2014, ACS nano.

[182]  Laure Monconduit,et al.  NiP3: a promising negative electrode for Li- and Na-ion batteries , 2014 .

[183]  Chong Seung Yoon,et al.  Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. , 2014, Nano letters.

[184]  J. Pérez-Flores,et al.  Hollandite-type TiO2: a new negative electrode material for sodium-ion batteries , 2014 .

[185]  Hiroshi Senoh,et al.  Indigo carmine: An organic crystal as a positive-electrode material for rechargeable sodium batteries , 2014, Scientific Reports.

[186]  J. Janek,et al.  Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na(0.7)CoO2. , 2014, Physical chemistry chemical physics : PCCP.

[187]  J. Yamaki,et al.  Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries , 2013 .

[188]  J. Tarascon,et al.  Rationalization of Intercalation Potential and Redox Mechanism for A2Ti3O7 (A = Li, Na) , 2013 .

[189]  M. Obrovac,et al.  (Cu6Sn5)1−xCx active/inactive nanocomposite negative electrodes for Na-ion batteries , 2013 .

[190]  Shu-Lei Chou,et al.  Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. , 2013, Nano letters.

[191]  Huanlei Wang,et al.  Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. , 2013, Chemical communications.

[192]  J. Goodenough,et al.  Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries. , 2013, ACS applied materials & interfaces.

[193]  Hao Gong,et al.  Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries. , 2013, Chemical communications.

[194]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[195]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[196]  M. Doeff,et al.  New materials based on a layered sodium titanate for dual electrochemical Na and Li intercalation systems , 2013 .

[197]  Raymond R. Unocic,et al.  Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory , 2013 .

[198]  Hanxi Yang,et al.  Electrochemical sodium storage of TiO2(B) nanotubes for sodium ion batteries , 2013 .

[199]  Zheng Jia,et al.  Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. , 2013, Nano letters.

[200]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[201]  J. Tarascon,et al.  Titanium(III) Sulfate as New Negative Electrode for Sodium-Ion Batteries , 2013 .

[202]  Xinping Ai,et al.  High capacity and rate capability of amorphous phosphorus for sodium ion batteries. , 2013, Angewandte Chemie.

[203]  Chunsheng Wang,et al.  Tin-coated viral nanoforests as sodium-ion battery anodes. , 2013, ACS nano.

[204]  J. Tarascon,et al.  Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple. , 2013, Journal of the American Chemical Society.

[205]  T. Nam,et al.  Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization , 2013 .

[206]  P. Kumta,et al.  Tin and graphite based nanocomposites: Potential anode for sodium ion batteries , 2013 .

[207]  Kazuma Gotoh,et al.  NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery , 2013 .

[208]  Seung M. Oh,et al.  An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode. , 2013, Physical chemistry chemical physics : PCCP.

[209]  A. Goñi,et al.  High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte , 2013 .

[210]  Gabriel M. Veith,et al.  Cu2Sb thin films as anode for Na-ion batteries , 2013 .

[211]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[212]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[213]  Oleg G. Poluektov,et al.  Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells , 2012 .

[214]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[215]  A. Smith,et al.  A small angle X-ray scattering and electrochemical study of the decomposition of wood during pyrolysis , 2012 .

[216]  M. Armand,et al.  Disodium Terephthalate (Na2C8H4O4) as High Performance Anode Material for Low‐Cost Room‐Temperature Sodium‐Ion Battery , 2012 .

[217]  Seung M. Oh,et al.  Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries , 2012, Advanced materials.

[218]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[219]  Mark N. Obrovac,et al.  Reversible Insertion of Sodium in Tin , 2012 .

[220]  Wei Wang,et al.  High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. , 2012, Chemical communications.

[221]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[222]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[223]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[224]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[225]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[226]  J. Dahn,et al.  Comparison of the Reactivity of NaxC6 and LixC6 with Non-Aqueous Solvents and Electrolytes , 2011 .

[227]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[228]  Jean-Marie Tarascon,et al.  NaxVO2 as possible electrode for Na-ion batteries , 2011 .

[229]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[230]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[231]  M. Armand,et al.  Conjugated dicarboxylate anodes for Li-ion batteries. , 2009, Nature materials.

[232]  J. Sangster,et al.  C-Na (Carbon-Sodium) System , 2007 .

[233]  P. Balbuena,et al.  Lithium-ion batteries : solid-electrolyte interphase , 2004 .

[234]  G. Lindbergh,et al.  On the use of voltammetric methods to determine electrochemical stability limits for lithium battery electrolytes , 2003 .

[235]  Denis Billaud,et al.  Electrochemical insertion of sodium into hard carbons , 2002 .

[236]  J. Tirado,et al.  Negative Electrodes for Lithium- and Sodium-Ion Batteries Obtained by Heat-Treatment of Petroleum Cokes below 1000°C , 2002 .

[237]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[238]  D. Aurbach,et al.  Investigation of the electrochemical windows of aprotic alkali metal (Li, Na, K) salt solutions , 2001 .

[239]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[240]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[241]  H. Fujimoto,et al.  Recent trends in carbon negative electrode materials , 1997 .

[242]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[243]  Jeff Dahn,et al.  Correlation Between Lithium Intercalation Capacity and Microstructure in Hard Carbons , 1996 .

[244]  J. Dahn,et al.  Lithium Insertion in High Capacity Carbonaceous Materials , 1995 .

[245]  M. Doeff,et al.  Electrochemical Insertion of Sodium into Carbon , 1993 .

[246]  D. R. Penn,et al.  Calculations of electorn inelastic mean free paths. II. Data for 27 elements over the 50–2000 eV range , 1991 .

[247]  D. R. Penn,et al.  Calculations of electron inelastic mean free paths for 31 materials , 1988 .

[248]  R. Baughman,et al.  Polyacetylene and Polyphenylene as Anode Materials for Nonaqueous Secondary Batteries , 1985 .

[249]  P. Hagenmuller,et al.  A study of the NaxTiO2 system by electrochemical deintercalation , 1983 .

[250]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[251]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[252]  W. Mumme,et al.  The crystal structure of Na2Ti7O15, and an ordered intergrowth of Na2Ti6O13 and `Na2Ti8O17' , 1968 .

[253]  C. Nordling,et al.  Precision Method for Obtaining Absolute Values of Atomic Binding Energies , 1957 .

[254]  R. Franklin Crystallite growth in graphitizing and non-graphitizing carbons , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[255]  R. Franklin The structure of graphitic carbons , 1951 .

[256]  Michael Höck,et al.  Lithium market research – global supply, future demand and price development , 2017 .

[257]  Huaping Zhao,et al.  Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries , 2017 .

[258]  C. Villevieille,et al.  FeSn2 and CoSn2 Electrode Materials for Na-Ion Batteries , 2016 .

[259]  Jun Lu,et al.  Ultrafast and Highly Reversible Sodium Storage in Zinc‐Antimony Intermetallic Nanomaterials , 2016 .

[260]  K. Kubota,et al.  Review-Practical Issues and Future Perspective for Na-Ion Batteries , 2015 .

[261]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[262]  Ning Zhang,et al.  Ultrasmall Sn Nanoparticles Embedded in Carbon as High‐Performance Anode for Sodium‐Ion Batteries , 2015 .

[263]  J. Whitacre,et al.  Using Polypyrrole Coating to Improve Cycling Stability of NaTi2(PO4)3 as an Aqueous Na-Ion Anode , 2015 .

[264]  D. Bresser,et al.  Unfolding the Mechanism of Sodium Insertion in Anatase TiO2 Nanoparticles , 2015 .

[265]  M. R. Palacín,et al.  Review-Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries , 2015 .

[266]  D. Bresser,et al.  Nanocrystalline TiO2(B) as Anode Material for Sodium-Ion Batteries , 2015 .

[267]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[268]  S. Passerini,et al.  Exploring the Low Voltage Behavior of V2O5 Aerogel as Intercalation Host for Sodium Ion Battery , 2015 .

[269]  Yuesheng Wang,et al.  Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries , 2015 .

[270]  J. Whitacre,et al.  Using Intimate Carbon to Enhance the Performance of NaTi2(PO4)3 Anode Materials: Carbon Nanotubes vs Graphite , 2014 .

[271]  L. Ellis,et al.  In Situ XRD Study of Silicon, Lead and Bismuth Negative Electrodes in Nonaqueous Sodium Cells , 2014 .

[272]  Bo Jiang,et al.  Nasicon material NaZr2(PO4)3: a novel storage material for sodium-ion batteries , 2014 .

[273]  R. Shanmugam,et al.  Na2/3Ni1/3Ti2/3O2: “Bi-Functional” Electrode Materials for Na-Ion Batteries , 2014 .

[274]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[275]  V. Battaglia,et al.  Conductive Polymer Binder-Enabled Cycling of Pure Tin Nanoparticle Composite Anode Electrodes for a Lithium-Ion Battery , 2013 .

[276]  Yuwon Park,et al.  Trigonal Na4Ti5O12 Phase as an Intercalation Host for Rechargeable Batteries , 2012 .

[277]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[278]  C. D. Wagner,et al.  The auger parameter, its utility and advantages: a review , 1988 .

[279]  H. Ebel,et al.  About the charging effect in X-ray photoelectron spectrometry , 1974 .