Time-lapse proteomics unveil constant high exposure of non-antibiotic drug induces synthetic susceptibility towards regular antibiotics.

[1]  R. Stocker,et al.  The ecological roles of bacterial chemotaxis , 2022, Nature Reviews Microbiology.

[2]  S. McLeod,et al.  Rational design of a new antibiotic class for drug-resistant infections , 2021, Nature.

[3]  Xinxing Li,et al.  A review: antimicrobial resistance data mining models and prediction methods study for pathogenic bacteria , 2021, The Journal of Antibiotics.

[4]  J. Nodwell,et al.  Biology and applications of co-produced, synergistic antimicrobials from environmental bacteria , 2021, Nature Microbiology.

[5]  H. Petković,et al.  Towards the sustainable discovery and development of new antibiotics , 2021, Nature Reviews Chemistry.

[6]  Rohit Ruhal,et al.  Biofilm patterns in gram-positive and gram-negative bacteria. , 2021, Microbiological research.

[7]  A. Serganov,et al.  Inhibitors of bacterial H2S biogenesis targeting antibiotic resistance and tolerance , 2021, Science.

[8]  İ. Erol,et al.  Quorum sensing systems, related virulence factors, and biofilm formation in Pseudomonas aeruginosa isolated from fish , 2021, Archives of Microbiology.

[9]  Samuel M. Brown,et al.  Effect of Hydroxychloroquine on Clinical Status at 14 Days in Hospitalized Patients With COVID-19: A Randomized Clinical Trial. , 2020, JAMA.

[10]  M. Saag Misguided Use of Hydroxychloroquine for COVID-19: The Infusion of Politics Into Science. , 2020, JAMA.

[11]  Adam J. Schaenzer,et al.  Antibiotic Resistance by Enzymatic Modification of Antibiotic Targets. , 2020, Trends in molecular medicine.

[12]  J. Fantini,et al.  Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal , 2020, International Journal of Antimicrobial Agents.

[13]  K. Hashimoto,et al.  Current status of potential therapeutic candidates for the COVID-19 crisis , 2020, Brain, Behavior, and Immunity.

[14]  Jacques Fantini,et al.  Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection , 2020, International Journal of Antimicrobial Agents.

[15]  Xu Liu,et al.  In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) , 2020, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[16]  G. Bazan,et al.  Enantiomeric glycosylated cationic block co-beta-peptides eradicate Staphylococcus aureus biofilms and antibiotic-tolerant persisters , 2019, Nature Communications.

[17]  G. Cerqueira,et al.  Simultaneous detection of genotype and phenotype enables rapid and accurate antibiotic susceptibility determination , 2019, Nature Medicine.

[18]  M. Aguilar,et al.  Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications , 2019, International journal of molecular sciences.

[19]  Antony R. Warden,et al.  Overcoming multidrug-resistance in bacteria with a two-step process to repurpose and re-combine established drugs. , 2019, Analytical chemistry.

[20]  G. Dantas,et al.  Metagenomic signatures of early life hospitalization and antibiotic treatment in the infant gut microbiota and resistome persist long after discharge , 2019, Nature Microbiology.

[21]  Yihe Ge,et al.  phz1 contributes much more to phenazine‐1‐carboxylic acid biosynthesis than phz2 in Pseudomonas aeruginosa rpoS mutant , 2019, Journal of basic microbiology.

[22]  Irine Ronin,et al.  Epistasis between antibiotic tolerance, persistence, and resistance mutations , 2019, Proceedings of the National Academy of Sciences.

[23]  B. Bassler,et al.  Bacterial quorum sensing in complex and dynamically changing environments , 2019, Nature Reviews Microbiology.

[24]  Paweł P. Łabaj,et al.  Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment , 2019, Nature Medicine.

[25]  Henry H. N. Lam,et al.  Application of proteomics in studying bacterial persistence , 2019, Expert review of proteomics.

[26]  R. Kishony,et al.  Personal clinical history predicts antibiotic resistance of urinary tract infections , 2019, Nature Medicine.

[27]  X. Fang,et al.  Pseudomonas aeruginosa quorum-sensing metabolite induces host immune cell death through cell surface lipid domain dissolution , 2018, Nature Microbiology.

[28]  V. Sourjik,et al.  Inverted signaling by bacterial chemotaxis receptors , 2018, Nature Communications.

[29]  Ana Rita Brochado,et al.  Species-specific activity of antibacterial drug combinations , 2018, Nature.

[30]  C. Pál,et al.  Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides , 2018, Nature Microbiology.

[31]  Peer Bork,et al.  Extensive impact of non-antibiotic drugs on human gut bacteria , 2018, Nature.

[32]  H. Shimizu,et al.  Prediction of Cross-resistance and Collateral Sensitivity by Gene Expression profiles and Genomic Mutations , 2017, Scientific Reports.

[33]  S. Saigal,et al.  Action and resistance mechanisms of antibiotics: A guide for clinicians , 2017, Journal of anaesthesiology, clinical pharmacology.

[34]  C. Ponticelli,et al.  Hydroxychloroquine in systemic lupus erythematosus (SLE) , 2017, Expert opinion on drug safety.

[35]  Tim N. Enke,et al.  Metabolic constraints on the evolution of antibiotic resistance , 2017, Molecular systems biology.

[36]  Gerard D. Wright Antibiotic Adjuvants: Rescuing Antibiotics from Resistance. , 2016, Trends in microbiology.

[37]  J. Sutton,et al.  Mechanisms of Increased Resistance to Chlorhexidine and Cross-Resistance to Colistin following Exposure of Klebsiella pneumoniae Clinical Isolates to Chlorhexidine , 2016, Antimicrobial Agents and Chemotherapy.

[38]  K. Krause,et al.  Aminoglycosides: An Overview. , 2016, Cold Spring Harbor perspectives in medicine.

[39]  T. Read,et al.  Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae , 2016, Nature Microbiology.

[40]  Shawn French,et al.  Assembly and clustering of natural antibiotics guides target identification. , 2016, Nature chemical biology.

[41]  Jaesung Park,et al.  Gram-negative and Gram-positive bacterial extracellular vesicles. , 2015, Seminars in cell & developmental biology.

[42]  M. Webber,et al.  Molecular mechanisms of antibiotic resistance , 2014, Nature Reviews Microbiology.

[43]  V. Fowler,et al.  Clinical management of Staphylococcus aureus bacteremia: a review. , 2014, JAMA.

[44]  B. Kégl,et al.  Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network , 2014, Nature Communications.

[45]  Daniel N. Wilson Ribosome-targeting antibiotics and mechanisms of bacterial resistance , 2013, Nature Reviews Microbiology.

[46]  Martin Dragosits,et al.  Adaptive laboratory evolution – principles and applications for biotechnology , 2013, Microbial Cell Factories.

[47]  Tracy Palmer,et al.  The twin-arginine translocation (Tat) protein export pathway , 2012, Nature Reviews Microbiology.

[48]  A. Driessen,et al.  The bacterial Sec-translocase: structure and mechanism , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[49]  Michael Otto,et al.  MRSA epidemic linked to a quickly spreading colonization and virulence determinant , 2012, Nature Medicine.

[50]  Remy Chait,et al.  Evolutionary paths to antibiotic resistance under dynamically sustained drug selection , 2011, Nature Genetics.

[51]  J. Collins,et al.  How antibiotics kill bacteria: from targets to networks , 2010, Nature Reviews Microbiology.

[52]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[53]  T. Wood,et al.  Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist , 2008, Microbial biotechnology.

[54]  T. D. de Kievit Quorum sensing in Pseudomonas aeruginosa biofilms. , 2009, Environmental microbiology.

[55]  R. Hancock,et al.  Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances , 2008, Nature Protocols.

[56]  Floyd E Romesberg,et al.  Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation , 2007, Nature Chemical Biology.

[57]  T. C. Barnett,et al.  Surface proteins of gram-positive bacteria and how they get there. , 2006, Annual review of microbiology.

[58]  G. Wadhams,et al.  Making sense of it all: bacterial chemotaxis , 2004, Nature Reviews Molecular Cell Biology.

[59]  J. Blondeau Fluoroquinolones: mechanism of action, classification, and development of resistance. , 2004, Survey of ophthalmology.

[60]  Måns Ehrenberg,et al.  The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. , 2003, Journal of molecular biology.

[61]  J. Faraldo-Gómez,et al.  Acquisition of siderophores in Gram-negative bacteria , 2003, Nature Reviews Molecular Cell Biology.

[62]  C. Walsh Molecular mechanisms that confer antibacterial drug resistance , 2000, Nature.

[63]  F. Baquero,et al.  Mutation Frequencies and Antibiotic Resistance , 2000, Antimicrobial Agents and Chemotherapy.

[64]  R. Lambert,et al.  Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non‐inhibitory concentration (NIC) values , 2000, Journal of applied microbiology.

[65]  T. Beveridge Structures of Gram-Negative Cell Walls and Their Derived Membrane Vesicles , 1999, Journal of bacteriology.

[66]  J. Cohen,et al.  Gram-positive sepsis. Mechanisms and differences from gram-negative sepsis. , 1999, Infectious disease clinics of North America.

[67]  R. Fox,et al.  Mechanism of action of hydroxychloroquine as an antirheumatic drug. , 1993, Seminars in arthritis and rheumatism.

[68]  E. Mini,et al.  Chemistry and mode of action of macrolides. , 1993, The Journal of antimicrobial chemotherapy.

[69]  D J Tipper,et al.  Mode of action of beta-lactam antibiotics. , 1985, Pharmacology & therapeutics.

[70]  J. Strominger,et al.  Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. , 1983, Annual review of biochemistry.