Adaptive Semidiscrete Finite Element Methods for Semilinear Parabolic Integrodifferential Optimal Control Problem with Control Constraint

The aim of this work is to study the semidiscrete finite element discretization for a class of semilinear parabolic integrodifferential optimal control problems. We derive a posteriori error estimates in -norm and -norm for both the control and coupled state approximations. Such estimates can be used to construct reliable adaptive finite element approximation for semilinear parabolic integrodifferential optimal control problem. Furthermore, we introduce an adaptive algorithm to guide the mesh refinement. Finally, a numerical example is given to demonstrate the theoretical results.

[1]  G. Fairweather,et al.  Finite element methods for parabolic and hyperbolic partial integro-differential equations , 1988 .

[2]  P. Neittaanmäki,et al.  Optimal Control of Nonlinear Parabolic Systems: Theory: Algorithms and Applications , 1994 .

[3]  Richard S. Falk,et al.  Approximation of a class of optimal control problems with order of convergence estimates , 1973 .

[4]  Ningning Yan,et al.  Finite element methods for optimal control problems governed by integral equations and integro-differential equations , 2005, Numerische Mathematik.

[5]  T. Geveci,et al.  On the approximation of the solution of an optimal control problem governed by an elliptic equation , 1979 .

[6]  Yanping Chen,et al.  L∞-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations , 2009 .

[7]  Yanping Chen,et al.  Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods , 2010 .

[8]  Ningning Yan,et al.  A posteriori error estimates for control problems governed by nonlinear elliptic equations , 2003 .

[9]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[10]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems , 2005, Comput. Optim. Appl..

[11]  Wenbin Liu,et al.  A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..

[12]  Yanping Chen,et al.  Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problem , 2010 .

[13]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[14]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[15]  Donald A. French,et al.  Approximation of an elliptic control problem by the finite element method , 1991 .

[16]  R. Verfürth A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations , 1994 .

[17]  Yanping Chen,et al.  A Posteriori Error Estimates of Triangular Mixed Finite Element Methods for Semilinear Optimal Control Problems , 2009 .

[18]  Vidar Thomée,et al.  Time discretization of an integro-differential equation of parabolic type , 1986 .

[19]  Yanping Chen,et al.  A posteriori error estimates for hp finite element solutions of convex optimal control problems , 2011, J. Comput. Appl. Math..

[20]  Z. Lu A posteriori error estimates of finite element methods for nonlinear quadratic boundary optimal control problem , 2011 .

[21]  R. Verfürth A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations , 1994 .