Critical percolation in the plane

We study scaling limits and conformal invariance of critical site percolation on triangular lattice. We show that some percolation-related quantities are harmonic conformal invariants, and calculate their values in the scaling limit. As a particular case we obtain conformal invariance of the crossing probabilities and Cardy's formula. Then we prove existence, uniqueness, and conformal invariance of the continuum scaling limit.

[1]  Wendelin Werner,et al.  Values of Brownian intersection exponents, I: Half-plane exponents , 1999 .

[2]  H. Kesten Percolation theory for mathematicians , 1982 .

[3]  Wendelin Werner,et al.  Values of Brownian intersection exponents, II: Plane exponents , 2000, math/0003156.

[4]  O. Schramm,et al.  The dimension of the planar Brownian frontier is 4/3 , 2000, math/0010165.

[5]  Michael Aizenman Scaling Limit for the Incipient Spanning Clusters , 1998 .

[6]  B. Duplantier Random walks, polymers, percolation, and quantum gravity in two dimensions , 1999 .

[7]  Harmonic Measure Exponents for Two-Dimensional Percolation , 1999, cond-mat/9901008.

[8]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.

[9]  Critical Exponents, Conformal Invariance and Planar Brownian Motion , 2000, math/0007042.

[10]  John Cardy Critical percolation in finite geometries , 1992 .

[11]  S. Kakutani 143. Two-dimensional Brownian Motion and Harmonic Functions , 1944 .

[12]  Yvan Saint-Aubin,et al.  Conformal invariance in two-dimensional percolation , 1994 .

[13]  H. Kesten The critical probability of bond percolation on the square lattice equals 1/2 , 1980 .

[14]  Almut Burchard,et al.  Holder Regularity and Dimension Bounds for Random Curves , 1998 .

[15]  Wendelin Werner,et al.  Values of Brownian intersection exponents III: Two-sided exponents , 2002 .

[16]  Two . dimensional Brownian Motion and Harmonic Functions , 2022 .

[17]  G. Lawler,et al.  Universality for conformally invariant intersection exponents , 2000 .