Notions of optimal transport theory and how to implement them on a computer

This article gives an introduction to optimal transport, a mathematical theory that makes it possible to measure distances between functions (or distances between more general objects), to interpolate between objects or to enforce mass/volume conservation in certain computational physics simulations. Optimal transport is a rich scientific domain, with active research communities, both on its theoretical aspects and on more applicative considerations, such as geometry processing and machine learning. This article aims at explaining the main principles behind the theory of optimal transport, introduce the different involved notions, and more importantly, how they relate, to let the reader grasp an intuition of the elegant theory that structures them. Then we will consider a specific setting, called semi-discrete, where a continuous function is transported to a discrete sum of Dirac masses. Studying this specific setting naturally leads to an efficient computational algorithm, that uses classical notions of computational geometry, such as a generalization of Voronoi diagrams called Laguerre diagrams.

[1]  Arthur Cayley,et al.  The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .

[2]  Gabriel Peyré,et al.  Optimal Transport with Proximal Splitting , 2013, SIAM J. Imaging Sci..

[3]  Andrea Tagliasacchi,et al.  High-contrast computational caustic design , 2014, ACM Trans. Graph..

[4]  S. Yau,et al.  Variational Principles for Minkowski Type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere Equations , 2013, 1302.5472.

[5]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[6]  M. V. D. Panne,et al.  Displacement Interpolation Using Lagrangian Mass Transport , 2011 .

[7]  Q. Mérigot,et al.  Light in power , 2017, ACM Trans. Graph..

[8]  U. Frisch,et al.  Reconstruction of the early Universe as a convex optimization problem , 2003 .

[9]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[10]  Quentin Mérigot,et al.  Discretization of functionals involving the Monge–Ampère operator , 2014, Numerische Mathematik.

[11]  L. Caffarelli The Monge-Ampère Equation and Optimal Transportation, an elementary review , 2003 .

[12]  Christian L'eonard A survey of the Schr\"odinger problem and some of its connections with optimal transport , 2013, 1308.0215.

[13]  H. Tuy Convex analysis and global optimization , 1998 .

[14]  Mathieu Desbrun,et al.  Power particles , 2015, ACM Trans. Graph..

[15]  Filippo Santambrogio,et al.  Introduction to optimal transport theory , 2010, Optimal Transport.

[16]  Mauro Dell'Amico,et al.  Assignment Problems , 1998, IFIP Congress: Fundamentals - Foundations of Computer Science.

[17]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[18]  Terrence Tao,et al.  An Introduction To Measure Theory , 2011 .

[19]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[20]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[21]  B. Lévy A Numerical Algorithm for L2 Semi-Discrete Optimal Transport in 3D , 2014, 1409.1279.

[22]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[23]  F. Santambrogio Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .

[24]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[25]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[26]  Franz Aurenhammer,et al.  Minkowski-type theorems and least-squares partitioning , 1992, SCG '92.

[27]  C. Villani Optimal Transport: Old and New , 2008 .

[28]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[29]  Facundo Mémoli,et al.  Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..

[30]  L. Ambrosio,et al.  A User’s Guide to Optimal Transport , 2013 .

[31]  James Serrin,et al.  Mathematical Principles of Classical Fluid Mechanics , 1959 .

[32]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[33]  Quentin Mérigot,et al.  A Lagrangian Scheme à la Brenier for the Incompressible Euler Equations , 2018, Found. Comput. Math..

[34]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[35]  Quentin Mérigot,et al.  A Newton algorithm for semi-discrete optimal transport , 2016, ArXiv.