Notions of optimal transport theory and how to implement them on a computer
暂无分享,去创建一个
[1] Arthur Cayley,et al. The Collected Mathematical Papers: On Monge's “Mémoire sur la théorie des déblais et des remblais” , 2009 .
[2] Gabriel Peyré,et al. Optimal Transport with Proximal Splitting , 2013, SIAM J. Imaging Sci..
[3] Andrea Tagliasacchi,et al. High-contrast computational caustic design , 2014, ACM Trans. Graph..
[4] S. Yau,et al. Variational Principles for Minkowski Type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere Equations , 2013, 1302.5472.
[5] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[6] M. V. D. Panne,et al. Displacement Interpolation Using Lagrangian Mass Transport , 2011 .
[7] Q. Mérigot,et al. Light in power , 2017, ACM Trans. Graph..
[8] U. Frisch,et al. Reconstruction of the early Universe as a convex optimization problem , 2003 .
[9] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[10] Quentin Mérigot,et al. Discretization of functionals involving the Monge–Ampère operator , 2014, Numerische Mathematik.
[11] L. Caffarelli. The Monge-Ampère Equation and Optimal Transportation, an elementary review , 2003 .
[12] Christian L'eonard. A survey of the Schr\"odinger problem and some of its connections with optimal transport , 2013, 1308.0215.
[13] H. Tuy. Convex analysis and global optimization , 1998 .
[14] Mathieu Desbrun,et al. Power particles , 2015, ACM Trans. Graph..
[15] Filippo Santambrogio,et al. Introduction to optimal transport theory , 2010, Optimal Transport.
[16] Mauro Dell'Amico,et al. Assignment Problems , 1998, IFIP Congress: Fundamentals - Foundations of Computer Science.
[17] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[18] Terrence Tao,et al. An Introduction To Measure Theory , 2011 .
[19] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .
[20] Quentin Mérigot,et al. A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.
[21] B. Lévy. A Numerical Algorithm for L2 Semi-Discrete Optimal Transport in 3D , 2014, 1409.1279.
[22] Adrian Bowyer,et al. Computing Dirichlet Tessellations , 1981, Comput. J..
[23] F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling , 2015 .
[24] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[25] D. F. Watson. Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..
[26] Franz Aurenhammer,et al. Minkowski-type theorems and least-squares partitioning , 1992, SCG '92.
[27] C. Villani. Optimal Transport: Old and New , 2008 .
[28] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[29] Facundo Mémoli,et al. Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..
[30] L. Ambrosio,et al. A User’s Guide to Optimal Transport , 2013 .
[31] James Serrin,et al. Mathematical Principles of Classical Fluid Mechanics , 1959 .
[32] Marco Cuturi,et al. Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.
[33] Quentin Mérigot,et al. A Lagrangian Scheme à la Brenier for the Incompressible Euler Equations , 2018, Found. Comput. Math..
[34] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[35] Quentin Mérigot,et al. A Newton algorithm for semi-discrete optimal transport , 2016, ArXiv.