Entanglement generation using silicon wire waveguide

We reported the first entanglement generation experiments using a silicon wire waveguide. In our experiments, we used a 1.09-cm long, 460-nm wide, and 220-nm thick waveguide that was fabricated from a silicon-on-insulator wafer. The waveguide loss was 3.1 dB, and the effective area calculated using a mode solver was 0.04 mum2 . We hope that our work will constitute a bridge between the silicon photonics and quantum information fields.

[1]  Hiroshi Fukuda,et al.  Generation of polarization entangled photon pairs using silicon wire waveguide. , 2008, Optics express.

[2]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[3]  Michal Lipson,et al.  Nonlinear optics in photonic nanowires. , 2008, Optics express.

[4]  M. Lipson,et al.  Generation of correlated photons in nanoscale silicon waveguides. , 2006, Optics express.

[5]  G. Agrawal,et al.  Silicon waveguides for creating quantum-correlated photon pairs. , 2006, Optics letters.

[6]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[7]  H. Takesue,et al.  Entanglement generation using silicon wire waveguide , 2008, 2008 5th IEEE International Conference on Group IV Photonics.

[8]  H. Takesue 1.5μm band Hong-Ou-Mandel experiment using photon pairs generated in two independent dispersion shifted fibers , 2007 .

[9]  Kyo Inoue,et al.  Generation of 1.5-μm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers , 2005 .

[10]  T. Tsuchizawa,et al.  Four-wave mixing in silicon wire waveguides. , 2005, Optics express.

[11]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[12]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[13]  P. Kumar,et al.  All-fiber photon-pair source for quantum communications , 2002, IEEE Photonics Technology Letters.

[14]  Kyo Inoue,et al.  Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop , 2004 .

[15]  T. Shoji,et al.  Microphotonics devices based on silicon microfabrication technology , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Akio Yoshizawa,et al.  Generation of polarisation-entangled photon pairs at 1550 nm using two PPLN waveguides , 2003 .

[17]  S. Massar,et al.  Continuous wave photon pair generation in silicon-on-insulator waveguides and ring resonators. , 2009, Optics express.

[18]  N. Gisin,et al.  Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication , 1999 .

[19]  Hiroshi Fukuda,et al.  Generation of high-purity entangled photon pairs using silicon wire waveguide. , 2008, Optics express.

[20]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[21]  Kyo Inoue,et al.  Generation of pulsed polarization-entangled photon pairs in a 1.55-microm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit. , 2005, Optics letters.