Chemosensation in C. elegans.

C. elegans has a highly developed chemosensory system that enables it to detect a wide variety of volatile (olfactory) and water-soluble (gustatory) cues associated with food, danger, or other animals. Much of its nervous system and more than 5% of its genes are devoted to the recognition of environmental chemicals. Chemosensory cues can elicit chemotaxis, rapid avoidance, changes in overall motility, and entry into and exit from the alternative dauer developmental stage. These behaviors are regulated primarily by the amphid chemosensory organs, which contain eleven pairs of chemosensory neurons. Each amphid sensory neuron expresses a specific set of candidate receptor genes and detects a characteristic set of attractants, repellents, or pheromones. About 500-1000 different G protein-coupled receptors (GPCRs) are expressed in chemosensory neurons, and these may be supplemented by alternative sensory pathways as well. Downstream of the GPCRs, two signal transduction systems are prominent in chemosensation, one that uses cGMP as a second messenger to open cGMP-gated channels, and one that relies upon TRPV channels. These sensory pathways are modulated and fine-tuned by kinases and phosphatases. Chemosensory preferences can be modified by sensory adaptation, developmental history, and associative learning, allowing C. elegans to integrate context and experience into its behavior.

[1]  Mustafa Abstract , 1952 .

[2]  S. Ward Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[3]  D B Dusenbery,et al.  Analysis of chemotaxis in the nematode Caenorhabditis elegans by countercurrent separation. , 1974, The Journal of experimental zoology.

[4]  H. Berg Chemotaxis in bacteria. , 1975, Annual review of biophysics and bioengineering.

[5]  Randle W. Ware,et al.  The nerve ring of the nematode Caenorhabditis elegans: Sensory input and motor output , 1975 .

[6]  S. Ward,et al.  Electron microscopical reconstruction of the anterior sensory anatomy of the nematode caenorhabditis elegans , 1975, The Journal of comparative neurology.

[7]  R. L. Russell,et al.  Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Hodgkin,et al.  Specific neuroanatomical changes in chemosensory mutants of the nematode Caenorhabditis elegans , 1977, The Journal of comparative neurology.

[9]  J. Culotti,et al.  Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. , 1978, Genetics.

[10]  J. Sulston,et al.  The Caenorhabditis elegans male: postembryonic development of nongonadal structures. , 1980, Developmental biology.

[11]  Susan J. Brown,et al.  Sensory control of dauer larva formation in Caenorhabditis elegans , 1981, The Journal of comparative neurology.

[12]  H. Horvitz,et al.  Serotonin and octopamine in the nematode Caenorhabditis elegans. , 1982, Science.

[13]  D. Riddle,et al.  A pheromone influences larval development in the nematode Caenorhabditis elegans. , 1982, Science.

[14]  D. Riddle,et al.  Developmental alterations in sensory neuroanatomy of the Caenorhabditis elegans dauer larva , 1983, The Journal of comparative neurology.

[15]  H. Berg Random Walks in Biology , 2018 .

[16]  D L Riddle,et al.  The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food, and temperature. , 1984, Developmental biology.

[17]  D. Riddle,et al.  A pheromone-induced developmental switch in Caenorhabditis elegans: Temperature-sensitive mutants reveal a wild-type temperature-dependent process. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Ralph E. Davis,et al.  Neural control of behaviour in Ascaris , 1985, Trends in Neurosciences.

[19]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[20]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  J. N. Thomson,et al.  Mutant sensory cilia in the nematode Caenorhabditis elegans. , 1986, Developmental biology.

[22]  R. K. Herman Mosaic analysis of two genes that affect nervous system structure in Caenorhabditis elegans. , 1987, Genetics.

[23]  R. Davis,et al.  Passive membrane properties of motorneurons and their role in long- distance signaling in the nematode Ascaris , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  Cori Bargmann,et al.  Chemosensory cell function in the behavior and development of Caenorhabditis elegans. , 1990, Cold Spring Harbor symposia on quantitative biology.

[25]  Cori Bargmann,et al.  Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans , 1991, Neuron.

[26]  Cori Bargmann,et al.  Control of larval development by chemosensory neurons in Caenorhabditis elegans. , 1991, Science.

[27]  R. Axel,et al.  A novel multigene family may encode odorant receptors: A molecular basis for odor recognition , 1991, Cell.

[28]  P. Grewal,et al.  Migration of Caenorhabditis elegans (Nematoda : Rhabditidae) larvae towards bacteria and the nature of the bacterial stimulus , 1992 .

[29]  Cori Bargmann,et al.  Odorant-selective genes and neurons mediate olfaction in C. elegans , 1993, Cell.

[30]  H. Horvitz,et al.  A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Thomas,et al.  Evidence for parallel processing of sensory information controlling dauer formation in Caenorhabditis elegans. , 1993, Genetics.

[32]  P. Sternberg,et al.  unc-101, a gene required for many aspects of Caenorhabditis elegans development and behavior, encodes a clathrin-associated protein. , 1994, Genes & Development.

[33]  J. Thomas,et al.  Multiple chemosensory defects in daf-11 and daf-21 mutants of Caenorhabditis elegans. , 1994, Genetics.

[34]  I. Simon,et al.  Allelic inactivation regulates olfactory receptor gene expression , 1994, Cell.

[35]  Cornelia I. Bargmann,et al.  The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily , 1994, Cell.

[36]  Cornelia I Bargmann,et al.  Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans , 1995, Neuron.

[37]  P. Sternberg,et al.  Sensory regulation of male mating behavior in caenorhabditis elegans , 1995, Neuron.

[38]  Monica Driscoll,et al.  Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor , 1995, Nature.

[39]  S. Dutcher,et al.  Flagellar assembly in two hundred and fifty easy-to-follow steps. , 1995, Trends in genetics : TIG.

[40]  J. Kaplan,et al.  Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor , 1995, Nature.

[41]  Wendy S. Schackwitz,et al.  Mutations affecting the chemosensory neurons of Caenorhabditis elegans. , 1995, Genetics.

[42]  Cori Bargmann,et al.  Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans , 1995, Cell.

[43]  Cori Bargmann,et al.  A Putative Cyclic Nucleotide–Gated Channel Is Required for Sensory Development and Function in C. elegans , 1996, Neuron.

[44]  D. Riddle,et al.  Control of C. elegans Larval Development by Neuronal Expression of a TGF-β Homolog , 1996, Science.

[45]  Wendy S. Schackwitz,et al.  Chemosensory Neurons Function in Parallel to Mediate a Pheromone Response in C. elegans , 1996, Neuron.

[46]  Ikue Mori,et al.  Mutations in a Cyclic Nucleotide–Gated Channel Lead to Abnormal Thermosensation and Chemosensation in C. elegans , 1996, Neuron.

[47]  Cori Bargmann,et al.  odr-10 Encodes a Seven Transmembrane Domain Olfactory Receptor Required for Responses to the Odorant Diacetyl , 1996, Cell.

[48]  D. van der Kooy,et al.  Mutations that prevent associative learning in C. elegans. , 1997, Behavioral neuroscience.

[49]  Cornelia I Bargmann,et al.  Reprogramming Chemotaxis Responses: Sensory Neurons Define Olfactory Preferences in C. elegans , 1997, Cell.

[50]  Cori Bargmann,et al.  OSM-9, A Novel Protein with Structural Similarity to Channels, Is Required for Olfaction, Mechanosensation, and Olfactory Adaptation inCaenorhabditis elegans , 1997, The Journal of Neuroscience.

[51]  Cori Bargmann,et al.  The Caenorhabditis elegans seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[52]  G. Ruvkun,et al.  The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans , 1997, Nature.

[53]  E. Ricbaude Guanylyl cyclase expression in specific sensory neurons: A new family of chemosensory receptors , 1997 .

[54]  Cori Bargmann,et al.  Environmental signals modulate olfactory acuity, discrimination, and memory in Caenorhabditis elegans. , 1997, Learning & memory.

[55]  P. Sternberg,et al.  Two neuronal G proteins are involved in chemosensation of the Caenorhabditis elegans Dauer-inducing pheromone. , 1997, Genetics.

[56]  S. Lockery,et al.  Active Currents Regulate Sensitivity and Dynamic Range in C. elegans Neurons , 1998, Neuron.

[57]  Cori Bargmann Neurobiology of the Caenorhabditis elegans genome. , 1998, Science.

[58]  Cori Bargmann,et al.  A cyclic nucleotide-gated channel inhibits sensory axon outgrowth in larval and adult Caenorhabditis elegans: a distinct pathway for maintenance of sensory axon structure. , 1998, Development.

[59]  C. Spike,et al.  Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. , 1998, Genetics.

[60]  Cornelia I Bargmann,et al.  Odorant Receptor Localization to Olfactory Cilia Is Mediated by ODR-4, a Novel Membrane-Associated Protein , 1998, Cell.

[61]  Cori Bargmann,et al.  The Gα Protein ODR-3 Mediates Olfactory and Nociceptive Function and Controls Cilium Morphogenesis in C. elegans Olfactory Neurons , 1998, Neuron.

[62]  P. Beech,et al.  Chlamydomonas Kinesin-II–dependent Intraflagellar Transport (IFT): IFT Particles Contain Proteins Required for Ciliary Assembly in Caenorhabditis elegans Sensory Neurons , 1998, The Journal of cell biology.

[63]  Cori Bargmann,et al.  Functional reconstitution of a heteromeric cyclic nucleotide-gated channel of Caenorhabditis elegans in cultured cells , 1999, Brain Research.

[64]  L. Rose,et al.  Movement of motor and cargo along cilia , 1999, Nature.

[65]  Cori Bargmann,et al.  Lateral Signaling Mediated by Axon Contact and Calcium Entry Regulates Asymmetric Odorant Receptor Expression in C. elegans , 1999, Cell.

[66]  J. Kaplan,et al.  Distinct Signaling Pathways Mediate Touch and Osmosensory Responses in a Polymodal Sensory Neuron , 1999, The Journal of Neuroscience.

[67]  M. Futai,et al.  Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. , 1999, Neuroreport.

[68]  Cori Bargmann,et al.  Alternative olfactory neuron fates are specified by the LIM homeobox gene lim-4. , 1999, Genes & development.

[69]  Kyuhyung Kim,et al.  FMRFamide-related neuropeptide gene family in Caenorhabditis elegans , 1999, Brain Research.

[70]  H. Horvitz,et al.  EAT-4, a Homolog of a Mammalian Sodium-Dependent Inorganic Phosphate Cotransporter, Is Necessary for Glutamatergic Neurotransmission in Caenorhabditis elegans , 1999, The Journal of Neuroscience.

[71]  Cori Bargmann,et al.  Sensory activity affects sensory axon development in C. elegans. , 1999, Development.

[72]  T. Ishihara,et al.  A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia. , 1999, Development.

[73]  Lesilee S. Rose,et al.  Role of a Class Dhc1b Dynein in Retrograde Transport of Ift Motors and Ift Raft Particles along Cilia, but Not Dendrites, in Chemosensory Neurons of Living Caenorhabditis elegans , 1999, The Journal of cell biology.

[74]  R. Plasterk,et al.  The complete family of genes encoding G proteins of Caenorhabditis elegans , 1999, Nature Genetics.

[75]  D. van der Kooy,et al.  Olfactory associative learning in Caenorhabditis elegans is impaired in lrn-1 and lrn-2 mutants. , 1999, Behavioral Neuroscience.

[76]  J. Apfeld,et al.  Regulation of lifespan by sensory perception in Caenorhabditis elegans , 1999, Nature.

[77]  Thomas M. Morse,et al.  The Fundamental Role of Pirouettes in Caenorhabditis elegans Chemotaxis , 1999, The Journal of Neuroscience.

[78]  J. Thomas,et al.  A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. , 2000, Genetics.

[79]  M. Labouesse,et al.  CHE-14, a protein with a sterol-sensing domain, is required for apical sorting in C. elegans ectodermal epithelial cells , 2000, Current Biology.

[80]  S. R. Wicks,et al.  CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in Caenorhabditis elegans. , 2000, Developmental biology.

[81]  Rajesh Ranganathan,et al.  C. elegans Locomotory Rate Is Modulated by the Environment through a Dopaminergic Pathway and by Experience through a Serotonergic Pathway , 2000, Neuron.

[82]  Cornelia I. Bargmann,et al.  Olfaction and Odor Discrimination Are Mediated by the C. elegans Guanylyl Cyclase ODR-1 , 2000, Neuron.

[83]  G. Ruvkun,et al.  Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant , 2000, Nature.

[84]  J. Thomas,et al.  egl-4 acts through a transforming growth factor-beta/SMAD pathway in Caenorhabditis elegans to regulate multiple neuronal circuits in response to sensory cues. , 2000, Genetics.

[85]  Takaaki Hirotsu,et al.  The Ras-MAPK pathway is important for olfaction in Caenorhabditis elegans , 2000, Nature.

[86]  J. Thomas,et al.  The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. , 2000, Molecular cell.

[87]  Koutarou D. Kimura,et al.  Regulation of C. elegans life-span by insulinlike signaling in the nervous system. , 2000, Science.

[88]  J. Satterlee,et al.  Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx , 2001, Neuron.

[89]  Leo X. Liu,et al.  Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. , 2001, Genes & development.

[90]  M. Barr,et al.  An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons , 2001, Current Biology.

[91]  A. Hart,et al.  Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Cori Bargmann,et al.  C. elegans odour discrimination requires asymmetric diversity in olfactory neurons , 2001, Nature.

[93]  Cori Bargmann,et al.  The CaMKII UNC-43 Activates the MAPKKK NSY-1 to Execute a Lateral Signaling Decision Required for Asymmetric Olfactory Neuron Fates , 2001, Cell.

[94]  Cori Bargmann,et al.  Polarized Dendritic Transport and the AP-1 μ1 Clathrin Adaptor UNC-101 Localize Odorant Receptors to Olfactory Cilia , 2001, Neuron.

[95]  J. Thomas,et al.  The C. elegans homolog of the murine cystic kidney disease gene Tg737 functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. , 2001, Development.

[96]  O. Hobert,et al.  The lin-11 LIM homeobox gene specifies olfactory and chemosensory neuron fates in C. elegans. , 2001, Development.

[97]  M. Yamamoto,et al.  Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. , 2001, The Journal of experimental biology.

[98]  Bret J. Pearson,et al.  The homeobox gene lim-6 is required for distinct chemosensory representations in C. elegans , 2001, Nature.

[99]  H. Horvitz,et al.  Mutations in the Caenorhabditis elegans Serotonin Reuptake Transporter MOD-5 Reveal Serotonin-Dependent and -Independent Activities of Fluoxetine , 2001, The Journal of Neuroscience.

[100]  Cori Bargmann,et al.  Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[101]  P. Sengupta,et al.  Regulation of Chemosensory Receptor Expression and Sensory Signaling by the KIN-29 Ser/Thr Kinase , 2002, Neuron.

[102]  Cori Bargmann,et al.  The Cyclic GMP-Dependent Protein Kinase EGL-4 Regulates Olfactory Adaptation in C. elegans , 2002, Neuron.

[103]  K. Gengyo-Ando,et al.  HEN-1, a Secretory Protein with an LDL Receptor Motif, Regulates Sensory Integration and Learning in Caenorhabditis elegans , 2002, Cell.

[104]  P. Sengupta,et al.  Regulation of Body Size and Behavioral State of C. elegans by Sensory Perception and the EGL-4 cGMP-Dependent Protein Kinase , 2002, Neuron.

[105]  D. van der Kooy,et al.  Serotonin mediates food-odor associative learning in the nematode Caenorhabditis elegans , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[106]  Cori Bargmann,et al.  Combinatorial Expression of TRPV Channel Proteins Defines Their Sensory Functions and Subcellular Localization in C. elegans Neurons , 2002, Neuron.

[107]  R. Plasterk,et al.  The G-protein gamma subunit gpc-1 of the nematode C.elegans is involved in taste adaptation. , 2002, The EMBO journal.

[108]  P. Sengupta,et al.  The DAF-7 TGF-beta signaling pathway regulates chemosensory receptor gene expression in C. elegans. , 2002, Genes & development.

[109]  Yi Zheng,et al.  Decoding of Polymodal Sensory Stimuli by Postsynaptic Glutamate Receptors in C. elegans , 2002, Neuron.

[110]  Maurice Kernan,et al.  Drosophila Regulatory factor X is necessary for ciliated sensory neuron differentiation , 2002, Development.

[111]  Mario de Bono,et al.  Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans , 2002, Nature.

[112]  Cori Bargmann,et al.  C. elegans Responds to Chemical Repellents by Integrating Sensory Inputs from the Head and the Tail , 2002, Current Biology.

[113]  Cori Bargmann,et al.  SEK‐1 MAPKK mediates Ca2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans , 2002, EMBO reports.

[114]  Cori Bargmann,et al.  Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli , 2002, Nature.

[115]  I. Mori,et al.  Negative Regulation and Gain Control of Sensory Neurons by the C. elegans Calcineurin TAX-6 , 2002, Neuron.

[116]  P. Sengupta,et al.  The divergent orphan nuclear receptor ODR-7 regulates olfactory neuron gene expression via multiple mechanisms in Caenorhabditis elegans. , 2003, Genetics.

[117]  Tanya M. Teslovich,et al.  Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome , 2003, Nature.

[118]  B. Yoder,et al.  Identification of CHE-13, a novel intraflagellar transport protein required for cilia formation. , 2003, Experimental cell research.

[119]  Y. Ohshima,et al.  Cyclic GMP-dependent protein kinase EGL-4 controls body size and lifespan in C. elegans , 2003, Development.

[120]  O. Hobert,et al.  Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. , 2003, Journal of neurobiology.

[121]  Oliver Hobert,et al.  A transcriptional regulatory cascade that controls left/right asymmetry in chemosensory neurons of C. elegans. , 2003, Genes & development.

[122]  A. Hajnal,et al.  The C. elegans G-protein-coupled receptor SRA-13 inhibits RAS/MAPK signalling during olfaction and vulval development , 2003, Development.

[123]  D. Riddle,et al.  SAGE surveys C. elegans carbohydrate metabolism: evidence for an anaerobic shift in the long-lived dauer larva , 2003, Mechanisms of Ageing and Development.

[124]  Cori Bargmann,et al.  Otx/otd homeobox genes specify distinct sensory neuron identities in C. elegans. , 2003, Developmental cell.

[125]  G. Ruvkun,et al.  daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. , 2003, Genes & development.

[126]  Gary Ruvkun,et al.  Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes , 2003, Nature.

[127]  Y. Ohshima,et al.  The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons , 2003, Development.

[128]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[129]  James H. Thomas,et al.  XBX-1 encodes a dynein light intermediate chain required for retrograde intraflagellar transport and cilia assembly in Caenorhabditis elegans. , 2003, Molecular biology of the cell.

[130]  Y. Ohshima,et al.  The C. elegans ceh-36 gene encodes a putative homemodomain transcription factor involved in chemosensory functions of ASE and AWC neurons. , 2004, Journal of molecular biology.

[131]  W. Schafer,et al.  G Protein-Coupled Receptor Kinase Function Is Essential for Chemosensation in C. elegans , 2004, Neuron.

[132]  Cori Bargmann,et al.  Specific Polyunsaturated Fatty Acids Drive TRPV-Dependent Sensory Signaling In Vivo , 2004, Cell.

[133]  Aravinthan D. T. Samuel,et al.  Identification of Thermosensory and Olfactory Neuron-Specific Genes via Expression Profiling of Single Neuron Types , 2004, Current Biology.

[134]  D. Riddle,et al.  ACaenorhabditis elegans dauer-inducing pheromone and an antagonistic component of the food supply , 1984, Journal of Chemical Ecology.

[135]  J. Bettinger,et al.  State‐dependency in C. elegans , 2004, Genes, brain, and behavior.

[136]  S. R. Wicks,et al.  Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. , 2004, Genes & development.

[137]  David B. Dusenbery,et al.  Responses of the nematodeCaenorhabditis elegans to controlled chemical stimulation , 1980, Journal of comparative physiology.

[138]  Y. Ohshima,et al.  Mechanisms for the control of body size by a G‐kinase and a downstream TGFβ signal pathway in Caenorhabditis elegans , 2004, Genes to cells : devoted to molecular & cellular mechanisms.

[139]  M. D. Bono,et al.  Soluble Guanylate Cyclases Act in Neurons Exposed to the Body Fluid to Promote C. elegans Aggregation Behavior , 2004, Current Biology.

[140]  T. Ishihara,et al.  TBX2/TBX3 transcriptional factor homologue controls olfactory adaptation in Caenorhabditis elegans. , 2004, Journal of neurobiology.

[141]  K. L. Gardner,et al.  The voltage‐gated calcium channel UNC‐2 is involved in stress‐mediated regulation of tryptophan hydroxylase , 2003, Journal of neurochemistry.

[142]  A. V. Maricq,et al.  Dopamine and Glutamate Control Area-Restricted Search Behavior in Caenorhabditis elegans , 2004, The Journal of Neuroscience.

[143]  J. Scholey,et al.  Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons , 2004, Nature Cell Biology.

[144]  Ryuzo Shingai,et al.  Neurons regulating the duration of forward locomotion in Caenorhabditis elegans , 2004, Neuroscience Research.

[145]  A. Hart,et al.  Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[146]  C. Kenyon,et al.  Regulation of C. elegans Longevity by Specific Gustatory and Olfactory Neurons , 2004, Neuron.

[147]  Appetitive response of the nematodeCaenorhabditis elegans to oxygen , 1980, Journal of comparative physiology.

[148]  R. Plasterk,et al.  Worms taste bitter: ASH neurons, QUI‐1, GPA‐3 and ODR‐3 mediate quinine avoidance in Caenorhabditis elegans , 2004, The EMBO journal.

[149]  P. Sengupta,et al.  Specification of chemosensory neuron subtype identities in Caenorhabditis elegans , 2004, Current Opinion in Neurobiology.

[150]  Shenyuan L. Zhang,et al.  Caenorhabditis elegans TRPV ion channel regulates 5HT biosynthesis in chemosensory neurons , 2004, Development.

[151]  S. Rademakers,et al.  A Network of Stimulatory and Inhibitory Gα-Subunits Regulates Olfaction in Caenorhabditis elegans , 2004, Genetics.

[152]  Cornelia I. Bargmann,et al.  Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue , 2004, Nature.

[153]  Tanya M. Teslovich,et al.  Comparative Genomics Identifies a Flagellar and Basal Body Proteome that Includes the BBS5 Human Disease Gene , 2004, Cell.

[154]  D. Kooy,et al.  Contextual Taste Cues Modulate Olfactory Learning in C. elegans by an Occasion-Setting Mechanism , 2004, Current Biology.

[155]  S. Lockery,et al.  Step-Response Analysis of Chemotaxis in Caenorhabditis elegans , 2003, The Journal of Neuroscience.

[156]  Xianwu Zheng,et al.  Cell-type specific regulation of serotonergic identity by the C. elegans LIM-homeodomain factor LIM-4. , 2005, Developmental biology.

[157]  Takaaki Hirotsu,et al.  Neural circuit‐dependent odor adaptation in C. elegans is regulated by the Ras‐MAPK pathway , 2005, Genes to cells : devoted to molecular & cellular mechanisms.

[158]  Keith A. Boroevich,et al.  Functional Genomics of the Cilium, a Sensory Organelle , 2005, Current Biology.

[159]  Cornelia I. Bargmann,et al.  Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans , 2005, Nature.

[160]  J. Benovic,et al.  Caenorhabditus elegans Arrestin Regulates Neural G Protein Signaling and Olfactory Adaptation and Recovery* , 2005, Journal of Biological Chemistry.

[161]  Gary Ruvkun,et al.  Analysis of xbx genes in C. elegans , 2005, Development.

[162]  Isaac Meilijson,et al.  Quantitative Analysis of Genetic and Neuronal Multi-Perturbation Experiments , 2005, PLoS Comput. Biol..

[163]  Oliver Hobert,et al.  MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[164]  J. Scholey,et al.  Functional coordination of intraflagellar transport motors , 2005, Nature.

[165]  E. Perens,et al.  C. elegans daf-6 encodes a patched-related protein required for lumen formation. , 2005, Developmental cell.

[166]  R. Kerr,et al.  In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents , 2005, The EMBO journal.

[167]  Zeynep F. Altun,et al.  Identification of a nematode chemosensory gene family. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[168]  Cori Bargmann,et al.  A circuit for navigation in Caenorhabditis elegans , 2005 .

[169]  Cornelia I. Bargmann,et al.  Identification of Transcriptional Regulatory Elements in Chemosensory Receptor Genes by Probabilistic Segmentation , 2005, Current Biology.

[170]  Dylan T Burnette,et al.  Intraflagellar Transport Is Required for the Vectorial Movement of TRPV Channels in the Ciliary Membrane , 2005, Current Biology.

[171]  R. Axel Scents and Sensibility: A Molecular Logic of Olfactory Perception (Nobel Lecture) , 2005 .

[172]  P. Sengupta,et al.  The UNC-3 Olf/EBF protein represses alternate neuronal programs to specify chemosensory neuron identity. , 2005, Developmental biology.

[173]  Y. Toh,et al.  The dyf-3 gene encodes a novel protein required for sensory cilium formation in Caenorhabditis elegans. , 2005, Journal of molecular biology.

[174]  N. Ryba,et al.  The receptors and coding logic for bitter taste , 2005, Nature.

[175]  Cori Bargmann,et al.  A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. , 2005, Genes & development.

[176]  Mario de Bono,et al.  Experience-Dependent Modulation of C. elegans Behavior by Ambient Oxygen , 2005, Current Biology.

[177]  Weontae Lee,et al.  Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone , 2005, Nature.

[178]  Koutarou D. Kimura,et al.  Diverse regulation of sensory signaling by C. elegans nPKC‐epsilon/eta TTX‐4 , 2005, The EMBO journal.

[179]  O. Hobert,et al.  An Interneuronal Chemoreceptor Required for Olfactory Imprinting in C. elegans , 2005, Science.

[180]  S. Lockery,et al.  Analysis of the effects of turning bias on chemotaxis in C. elegans , 2005, Journal of Experimental Biology.

[181]  J. Scholey,et al.  Functional modulation of IFT kinesins extends the sensory repertoire of ciliated neurons in Caenorhabditis elegans , 2006, The Journal of cell biology.

[182]  D. Clapham,et al.  An introduction to TRP channels. , 2006, Annual review of physiology.

[183]  S. Lockery,et al.  Searching for Neuronal Left/Right Asymmetry: Genomewide Analysis of Nematode Receptor-Type Guanylyl Cyclases , 2006, Genetics.

[184]  Yuichi Iino,et al.  Goalpha regulates olfactory adaptation by antagonizing Gqalpha-DAG signaling in Caenorhabditis elegans. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[185]  Cornelia I Bargmann,et al.  A Distributed Chemosensory Circuit for Oxygen Preference in C. elegans , 2006, PLoS biology.

[186]  Suzanne Rademakers,et al.  Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans , 2006, The EMBO journal.

[187]  Yuichi Iino,et al.  Goα regulates olfactory adaptation by antagonizing Gqα-DAG signaling in Caenorhabditis elegans , 2006 .

[188]  1David B. Morton Invertebrates yield a plethora of atypical guanylyl cyclases , 2004, Molecular Neurobiology.