Dimension and dimensional reduction in quantum gravity
暂无分享,去创建一个
[1] G. Calcagni,et al. Standard Model in multiscale theories and observational constraints , 2015, 1512.06858.
[2] O. Andreev. String free energy, Hagedorn and gauge/string duality , 2008, 0807.1017.
[3] J. Magueijo,et al. Gravity as the breakdown of conformal invariance , 2015, 1505.04649.
[4] Astrid Eichhorn,et al. Spectral dimension in causal set quantum gravity , 2013, 1311.2530.
[5] Daniel F. Litim,et al. Black holes and asymptotically safe gravity , 2010, 1002.0260.
[6] G. Calcagni,et al. Cosmic microwave background and inflation in multi-fractional spacetimes , 2016, 1606.08449.
[7] W. Marsden. I and J , 2012 .
[8] M. Arzano,et al. UV dimensional reduction to two from group valued momenta , 2016, 1611.10343.
[9] S. Carlip,et al. Dimensional reduction in manifoldlike causal sets , 2017, 1710.00938.
[10] G. Landsberg,et al. Searching for the Layered Structure of Space at the LHC , 2010, 1012.1870.
[11] Probability Distributions for Quantum Stress Tensors Measured in a Finite Time Interval , 2015, 1508.02359.
[12] A. Jourjine. Matter on granular space-time , 2008, 0804.4370.
[13] J. Gegenberg,et al. Gravitational wave defocussing in quadratic gravity , 2017, 1705.00507.
[14] T. Tomaras,et al. Is the standard model saved asymptotically by conformal symmetry? , 2014, 1409.0492.
[15] J. Mureika,et al. Detecting vanishing dimensions via primordial gravitational wave astronomy. , 2011, Physical review letters.
[16] Petr Hořava. Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.
[17] J. Thürigen. Discrete quantum geometries and their effective dimension , 2015 .
[18] B. Mandelbrot. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.
[19] J. Magueijo,et al. Dimensional reduction in momentum space and scale-invariant cosmological fluctuations , 2013 .
[20] Steven Carlip. Symmetries, horizons, and black hole entropy , 2007 .
[21] G. Calcagni. Multiscale spacetimes from first principles , 2016, 1609.02776.
[22] Manfred Requardt,et al. THE CONTINUUM LIMIT OF DISCRETE GEOMETRIES , 2005, math-ph/0507017.
[23] S. Carlip. Can gravitational microlensing by vacuum fluctuations be observed , 2015 .
[24] N. Afshordi,et al. Emergent spacetime in stochastically evolving dimensions , 2014, 1405.3297.
[25] T. Regge. General relativity without coordinates , 1961 .
[26] Piero Nicolini,et al. Spectral dimension of a quantum universe , 2009, 0912.0220.
[27] C. Fewster,et al. Probability distributions of smeared quantum stress tensors , 2010, 1004.0179.
[28] Doubly special quantum and statistical mechanics from quantum κ-Poincaré algebra , 2001, hep-th/0111110.
[29] Theodor Kaluza,et al. On the Unification Problem in Physics , 2018, International Journal of Modern Physics D.
[30] Jonas Mureika. Primordial Black Hole Evaporation and Spontaneous Dimensional Reduction , 2012, 1204.3619.
[31] J. Magueijo,et al. Dimensional reduction in the sky , 2013, 1305.3153.
[32] Bianca Dittrich,et al. The continuum limit of loop quantum gravity - a framework for solving the theory , 2014, 1409.1450.
[33] Nadir Bizi,et al. The disappearance of causality at small scale in almost-commutative manifolds , 2014, 1411.0878.
[34] L. Modesto. Fractal spacetime from the area spectrum , 2009 .
[35] F. Brighenti,et al. Primordial perturbations in a rainbow universe with running Newton constant , 2016, 1612.06378.
[36] L. Smolin,et al. Space-time foam as the universal regulator , 1985 .
[37] M. Arzano,et al. Diffusion on \kappa -Minkowski space , 2014, 1404.4762.
[38] J. Jurkiewicz,et al. Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations , 2014, 1411.7712.
[39] S. Zohren,et al. Dynamical dimensional reduction in toy models of 4D causal quantum gravity , 2012, 1202.2710.
[40] Margaret Nichols. Trans , 2015, De-centering queer theory.
[41] S. Carlip. Spontaneous Dimensional Reduction , 2012, 1207.4503.
[42] Gerald V. Dunne,et al. Heat kernels and zeta functions on fractals , 2012, 1205.2723.
[43] D. Gross. Strings at superplanckian energies: in search of the string symmetry , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[44] S. Weinberg. The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .
[45] Viqar Husain,et al. High energy modifications of blackbody radiation and dimensional reduction , 2013, 1305.2814.
[46] G. Calcagni,et al. Imprint of quantum gravity in the dimension and fabric of spacetime , 2017, 1705.04876.
[47] Conformal description of horizon's states , 1998, hep-th/9812056.
[48] L. Smolin,et al. Renormalization of general relativity on a background of spacetime foam , 1986 .
[49] D. Stojkovic,et al. Extending the cascading gravity model to lower dimensions , 2014, 1404.7145.
[50] T. Padmanabhan,et al. Spacetime with zero point length is two-dimensional at the Planck scale , 2015, 1507.05669.
[51] B. Dewitt,et al. Relativity, Groups, and Topology , 1964 .
[52] Frank Saueressig,et al. The R^2 phase-diagram of QEG and its spectral dimension , 2012, 1206.0657.
[53] S. Carlip. Black Hole Thermodynamics , 2014, 1410.1486.
[54] Rafael D. Sorkin. Causal Sets: Discrete Gravity (Notes for the Valdivia Summer School) , 2003 .
[55] O. Klein,et al. Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English) , 1926 .
[56] Gianluca Calcagni,et al. Multifractional theories: an unconventional review , 2016, 1612.05632.
[57] S. Weinberg. Ultraviolet divergences in quantum theories of gravitation. , 1980 .
[58] Theodor Kaluza. Zum Unitätsproblem der Physik , 1921 .
[59] Tilman Plehn,et al. Signatures of gravitational fixed points at the Large Hadron Collider. , 2007, Physical review letters.
[60] M. Arzano,et al. Localization and diffusion in polymer quantum field theory , 2014, 1408.2959.
[61] M. Roček,et al. Quantum regge calculus , 1981 .
[62] D. Stojkovic. VANISHING DIMENSIONS: A REVIEW , 2013, 1406.2696.
[63] R. Arnowitt,et al. Republication of: The dynamics of general relativity , 2004 .
[64] B. Rothschild,et al. Asymptotic enumeration of partial orders on a finite set , 1975 .
[65] S. Carlip. The Small Scale Structure of Spacetime , 2010, 1009.1136.
[66] M. Reuter,et al. Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .
[67] On the ultraviolet behaviour of Newton's constant , 2004, hep-th/0401071.
[68] R. Loll,et al. De Sitter Universe from Causal Dynamical Triangulations without Preferred Foliation , 2013, 1307.5469.
[69] Joao Magueijo,et al. DSR as an explanation of cosmological structure , 2008, 0807.1854.
[70] O. Zanusso,et al. Spectral dimensions from the spectral action , 2014, 1410.7999.
[71] V. Belinskiǐ,et al. Oscillatory approach to a singular point in the relativistic cosmology , 1970 .
[72] J. Laiho,et al. Lattice Quantum Gravity and Asymptotic Safety , 2016, 1604.02745.
[73] D. Malament. The class of continuous timelike curves determines the topology of spacetime , 1977 .
[74] The Atick–Witten free energy, closed tachyon condensation and deformed Poincaré symmetry , 2002, hep-th/0205014.
[75] H. Georgi,et al. (De)constructing dimensions. , 2001, Physical review letters.
[76] D. Gross,et al. The High-energy Behavior of Open String Scattering , 1989 .
[77] Super-Renormalizable Multidimensional Gravity: Theory and Applications , 2013 .
[78] B. Dewitt. Quantum Theory of Gravity. I. The Canonical Theory , 1967 .
[79] D. Vassilevich,et al. High energy bosons do not propagate , 2013, 1312.2235.
[80] L. Modesto. Fractal Structure of Loop Quantum Gravity , 2008, 0812.2214.
[81] S. Mukohyama. Scale-invariant cosmological perturbations from Hořava-Lifshitz gravity without inflation , 2009, 0904.2190.
[82] Michael P. Salem,et al. Observable effects of anisotropic bubble nucleation , 2010, 1003.0663.
[83] J. Barrow,et al. Chaos in the mixmaster universe , 1983 .
[84] F. Saueressig,et al. Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .
[85] Eikonal quantum gravity and planckian scattering , 1992, hep-th/9203082.
[86] G. Calcagni,et al. Particle-physics constraints on multifractal spacetimes , 2015, 1512.02621.
[88] Dierk Schleicher. Hausdorff Dimension, Its Properties, and Its Surprises , 2007, Am. Math. Mon..
[89] Daniel F Litim. Fixed points of quantum gravity. , 2004, Physical review letters.
[90] Joshua H. Cooperman. On a renormalization group scheme for causal dynamical triangulations , 2016 .
[91] F. Brighenti,et al. Thermal dimension of quantum spacetime , 2016, Physics Letters B.
[92] David Mattingly,et al. Modern Tests of Lorentz Invariance , 2005, Living reviews in relativity.
[93] G. Calcagni. Fractal universe and quantum gravity. , 2009, Physical review letters.
[94] S. Hawking,et al. General Relativity; an Einstein Centenary Survey , 1979 .
[95] J. Hatzenbuhler,et al. DIMENSION THEORY , 1997 .
[96] J. Atick,et al. The Hagedorn Transition and the Number of Degrees of Freedom of String Theory , 1988 .
[97] C. Isham. Some quantum field theory aspects of the superspace quantization of general relativity , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[98] Frank Saueressig,et al. Quantum gravity signatures in the Unruh effect , 2016, 1605.08015.
[99] G. Hooft. Graviton dominance in ultra-high-energy scattering , 1987 .
[100] D. Mattingly,et al. Constraints from cosmic rays on non-systematic Lorentz violation , 2005, astro-ph/0501425.
[101] Y. Nakayama. A lecture note on scale invariance vs conformal invariance , 2013 .
[102] Jorge Pullin,et al. Loop Quantum Gravity: The First 30 Years , 2017 .
[103] H. Snyder,et al. Quantized Space-Time , 1947 .
[104] S. Surya,et al. Echoes of asymptotic silence in causal set quantum gravity , 2017, 1703.08454.
[105] J. Magueijo,et al. Reappraisal of a model for deformed special relativity , 2015, 1512.03268.
[106] Luis J. Garay. Quantum Gravity and Minimum Length , 1995 .
[107] D. Coumbe. A Hypothesis on the Nature of Time , 2015, 1502.04320.
[108] Zeilinger,et al. Measuring the dimension of space time. , 1985, Physical review letters.
[109] D. Gross,et al. String Theory Beyond the Planck Scale , 1988 .
[110] M. Gorji,et al. High temperature dimensional reduction in Snyder space , 2015, 1504.07117.
[111] F. Besnard. Two roads to noncommutative causality , 2015, 1508.01917.
[112] Savas Dimopoulos,et al. The Hierarchy problem and new dimensions at a millimeter , 1998, hep-ph/9803315.
[113] L. E. J. Brouwer,et al. Beweis der Invarianz der Dimensionenzahl , 1911 .
[114] Universal regular short distance behavior from an interaction with a scale-invariant gravity , 2001, gr-qc/0110076.
[115] A. Bonanno,et al. Asymptotically safe cosmology – A status report , 2017, 1702.04137.
[116] J. Jurkiewicz,et al. Spectral dimension of the universe , 2005, hep-th/0505113.
[117] J. Barrow,et al. Observational constraints on dual intermediate inflation , 2014, 1401.7491.
[118] Yu Nakayama,et al. Scale invariance vs conformal invariance , 2013, 1302.0884.
[119] Chamseddine,et al. Universal Formula for Noncommutative Geometry Actions: Unification of Gravity and the Standard Model. , 1996, Physical review letters.
[120] Carlo Pagani,et al. Composite operators in asymptotic safety , 2016, 1611.06522.
[121] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[122] S. Carlip. Dimensional reduction in causal set gravity , 2015, 1506.08775.
[123] Frank Saueressig,et al. Fractal space-times under the microscope: a renormalization group view on Monte Carlo data , 2011, 1110.5224.
[124] H. Ooguri,et al. Borel summation of string theory for Planck scale scattering , 1990 .
[125] V. Oguri,et al. THE COSMIC MICROWAVE BACKGROUND SPECTRUM AND AN UPPER LIMIT FOR FRACTAL SPACE DIMENSIONALITY , 2008, 0806.2675.
[126] Daniel Becker,et al. Propagating gravitons vs. ‘dark matter’ in asymptotically safe quantum gravity , 2014, 1407.5848.
[127] Bombelli,et al. Space-time as a causal set. , 1987, Physical review letters.
[128] L. Randall,et al. A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.
[129] S. Carlip. Black Hole Entropy from Bondi-Metzner-Sachs Symmetry at the Horizon. , 2017, Physical review letters.
[130] A. Polyakov. Quantum Geometry of Bosonic Strings , 1981 .
[131] J. Miller,et al. A first look at transition amplitudes in (2 + 1)-dimensional causal dynamical triangulations , 2013, 1305.2932.
[132] Jourjine. Dimensional phase transitions: Coupling of matter to the cell complex. , 1985, Physical review. D, Particles and fields.
[133] T. Plehn,et al. Extra Dimensions and their Ultraviolet Completion , 2009, 0912.2653.
[134] M. Sakellariadou,et al. Spectral action with zeta function regularization , 2014, 1412.4669.
[135] M. Rinaldi. Observational signatures of pre-inflationary and lower dimensional effective gravity , 2010, 1011.0668.
[136] A. Görlich,et al. Characteristics of the new phase in CDT , 2016, The European physical journal. C, Particles and fields.
[137] Pierre Mathieu,et al. Conformal Field Theory , 1999 .
[138] Dynamics of Silent Universes , 1994, astro-ph/9406068.
[139] V. Belinskiǐ,et al. A General Solution of the Einstein Equations with a Time Singularity , 1982 .
[140] G. Landsberg,et al. Vanishing Dimensions and Planar Events at the LHC , 2010, 1003.5914.
[141] G. J. Whitrow. WHY PHYSICAL SPACE HAS THREE DIMENSIONS* , 1955, The British Journal for the Philosophy of Science.
[142] M. Henneaux. Geometry of Zero Signature Space-times , 1979 .
[143] J. Jurkiewicz,et al. New higher-order transition in causal dynamical triangulations , 2017, 1704.04373.
[144] S. Carlip,et al. Lower bound on the spectral dimension near a black hole , 2011, 1108.4686.
[145] Anisotropic Kantowski-Sachs universe from gravitational tunneling and its observational signatures , 2010, 1003.3204.
[146] Joshua H. Cooperman,et al. Setting the physical scale of dimensional reduction in causal dynamical triangulations , 2018, Physical Review D.
[147] TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.
[148] G. Calcagni,et al. Spectral dimension of quantum geometries , 2013, 1311.3340.
[149] Gianluca Calcagni,et al. Probing the quantum nature of spacetime by diffusion , 2013, 1304.7247.
[150] A validation of causal dynamical triangulations , 2011, 1110.6875.
[151] R. Loll,et al. Discrete Approaches to Quantum Gravity in Four Dimensions , 1998, Living reviews in relativity.
[152] S. Carlip. Spontaneous Dimensional Reduction in Short‐Distance Quantum Gravity? , 2009, 0909.3329.
[153] G. Calcagni,et al. Quantum spectral dimension in quantum field theory , 2014, 1408.0199.
[154] Andreas Nink,et al. Asymptotic Safety in quantum gravity , 2013, Scholarpedia.
[155] Z. Xianyu,et al. Unitary standard model from spontaneous dimensional reduction and weak boson scattering at the LHC , 2011, 1112.1028.
[156] S. Carlip,et al. Vacuum fluctuations and the small scale structure of spacetime. , 2011, Physical review letters.
[157] A. Perez. Minimal Length Scale Scenarios for Quantum Gravity , 2013 .
[158] G. Alencar,et al. On effective spacetime dimension in the Hořava–Lifshitz gravity , 2015, 1505.05087.
[159] M. Reuter,et al. Cosmology of the Planck era from a renormalization group for quantum gravity , 2002 .
[160] Fractal spacetimes in stochastic gravity? - views from anomalous diffusion and the correlation hierarchy , 2017, 1702.08145.
[161] A. Kostelecký,et al. Data Tables for Lorentz and CPT Violation , 2008, 0801.0287.
[162] J. Cardy. Scaling and Renormalization in Statistical Physics , 1996 .
[163] Weinstein,et al. Space-time: Arena or illusion? , 1985, Physical review. D, Particles and fields.
[164] The general solution of the vacuum einstein equation in the limit of strong gravity , 1988 .
[165] J. Jurkiewicz,et al. The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.
[166] L. Andersson,et al. Asymptotic silence of generic cosmological singularities. , 2004, Physical review letters.
[167] Susskind. String theory and the principle of black hole complementarity. , 1993, Physical review letters.
[168] C. Chicone,et al. Cosmic Jets , 2010, 1011.3477.
[169] Some consequences of the generalised uncertainty principle: statistical mechanical, cosmological, and varying speed of light , 2001, hep-th/0107255.
[170] Stefano Liberati,et al. Tests of Lorentz invariance: a 2013 update , 2013, 1304.5795.
[171] S. Giddings,et al. Observables, gravitational dressing, and obstructions to locality and subsystems , 2016, 1607.01025.
[172] The Φ4 quantum field in a scale invariant random metric , 2002, hep-th/0208212.
[173] Christoph Rahmede,et al. Further evidence for asymptotic safety of quantum gravity , 2014, 1410.4815.
[174] Jean-Pierre Antoine,et al. Functional Integration , 1980, Springer US.
[175] M. Arzano,et al. Non-commutative fields and the short-scale structure of spacetime , 2017, 1704.02225.
[176] J. Synge,et al. Relativity: The General Theory , 1960 .
[177] L. Modesto. Super-renormalizable Multidimensional Quantum Gravity , 2012, 1202.3151.
[178] Petr Hořava. Spectral dimension of the universe in quantum gravity at a lifshitz point. , 2009, Physical review letters.
[179] A. Belenchia,et al. Spectral dimension from nonlocal dynamics on causal sets , 2015, 1507.00330.
[180] D. Litim. Fixed points of quantum gravity , 2003, hep-th/0312114.
[181] Dario Benedetti,et al. Fractal properties of quantum spacetime. , 2008, Physical review letters.
[182] Joe Henson,et al. Spectral geometry as a probe of quantum spacetime , 2009, 0911.0401.
[183] J. Scargill. An anisotropic universe due to dimension-changing vacuum decay , 2015, 1506.07100.
[184] B. Müller,et al. Improved bounds on the dimension of space-time. , 1986, Physical Review Letters.
[185] A. Görlich,et al. The semiclassical limit of causal dynamical triangulations , 2011, 1102.3929.
[186] D. Coumbe. Quantum gravity without vacuum dispersion , 2015, 1512.02519.
[187] David D. Reid. Manifold dimension of a causal set: Tests in conformally flat spacetimes , 2003 .
[188] G. Calcagni,et al. Dimensional flow in discrete quantum geometries , 2014, 1412.8390.
[189] W. Unruh. Notes on black-hole evaporation , 1976 .
[190] Bryce S. DeWitt,et al. Dynamical theory of groups and fields , 1964 .
[191] K. Stelle. Renormalization of Higher Derivative Quantum Gravity , 1977 .
[192] Y. Pesin. On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions , 1993 .
[193] S. Drake,et al. Dialogue concerning the Two Chief World Systems , 1954 .
[194] D. Vassilevich,et al. Heat kernel expansion: user's manual , 2003, hep-th/0306138.
[195] Craig Callender,et al. Answers in search of a question: ‘proofs’ of the tri-dimensionality of space , 2005 .
[196] J. Mielczarek. Asymptotic silence in loop quantum cosmology , 2012, 1212.3527.
[197] Chuang Liu,et al. Scaling and Renormalization , 2002 .
[198] M. Ronco. On the UV Dimensions of Loop Quantum Gravity , 2016, 1605.05979.
[199] M. Maziashvili. QUANTUM-GRAVITATIONAL RUNNING/REDUCTION OF THE SPACE–TIME DIMENSION , 2009, 0905.3612.
[200] H. G. E. Hentschel,et al. The infinite number of generalized dimensions of fractals and strange attractors , 1983 .
[201] Joshua H. Cooperman. Renormalization of lattice-regularized quantum gravity models II. The case of causal dynamical triangulations , 2014, 1406.4531.
[202] L. Schläfli. Theorie der vielfachen Kontinuität , 1901 .