Dimension and dimensional reduction in quantum gravity

If gravity is asymptotically safe, operators will exhibit anomalous scaling at the ultraviolet fixed point in a way that makes the theory effectively two-dimensional. A number of independent lines of evidence, based on different approaches to quantization, indicate a similar short-distance dimensional reduction. I will review the evidence for this behavior, emphasizing the physical question of what one means by `dimension' in a quantum spacetime, and will discuss possible mechanisms that could explain the universality of this phenomenon.

[1]  G. Calcagni,et al.  Standard Model in multiscale theories and observational constraints , 2015, 1512.06858.

[2]  O. Andreev String free energy, Hagedorn and gauge/string duality , 2008, 0807.1017.

[3]  J. Magueijo,et al.  Gravity as the breakdown of conformal invariance , 2015, 1505.04649.

[4]  Astrid Eichhorn,et al.  Spectral dimension in causal set quantum gravity , 2013, 1311.2530.

[5]  Daniel F. Litim,et al.  Black holes and asymptotically safe gravity , 2010, 1002.0260.

[6]  G. Calcagni,et al.  Cosmic microwave background and inflation in multi-fractional spacetimes , 2016, 1606.08449.

[7]  W. Marsden I and J , 2012 .

[8]  M. Arzano,et al.  UV dimensional reduction to two from group valued momenta , 2016, 1611.10343.

[9]  S. Carlip,et al.  Dimensional reduction in manifoldlike causal sets , 2017, 1710.00938.

[10]  G. Landsberg,et al.  Searching for the Layered Structure of Space at the LHC , 2010, 1012.1870.

[11]  Probability Distributions for Quantum Stress Tensors Measured in a Finite Time Interval , 2015, 1508.02359.

[12]  A. Jourjine Matter on granular space-time , 2008, 0804.4370.

[13]  J. Gegenberg,et al.  Gravitational wave defocussing in quadratic gravity , 2017, 1705.00507.

[14]  T. Tomaras,et al.  Is the standard model saved asymptotically by conformal symmetry? , 2014, 1409.0492.

[15]  J. Mureika,et al.  Detecting vanishing dimensions via primordial gravitational wave astronomy. , 2011, Physical review letters.

[16]  Petr Hořava Quantum Gravity at a Lifshitz Point , 2009, 0901.3775.

[17]  J. Thürigen Discrete quantum geometries and their effective dimension , 2015 .

[18]  B. Mandelbrot How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension , 1967, Science.

[19]  J. Magueijo,et al.  Dimensional reduction in momentum space and scale-invariant cosmological fluctuations , 2013 .

[20]  Steven Carlip Symmetries, horizons, and black hole entropy , 2007 .

[21]  G. Calcagni Multiscale spacetimes from first principles , 2016, 1609.02776.

[22]  Manfred Requardt,et al.  THE CONTINUUM LIMIT OF DISCRETE GEOMETRIES , 2005, math-ph/0507017.

[23]  S. Carlip Can gravitational microlensing by vacuum fluctuations be observed , 2015 .

[24]  N. Afshordi,et al.  Emergent spacetime in stochastically evolving dimensions , 2014, 1405.3297.

[25]  T. Regge General relativity without coordinates , 1961 .

[26]  Piero Nicolini,et al.  Spectral dimension of a quantum universe , 2009, 0912.0220.

[27]  C. Fewster,et al.  Probability distributions of smeared quantum stress tensors , 2010, 1004.0179.

[28]  Doubly special quantum and statistical mechanics from quantum κ-Poincaré algebra , 2001, hep-th/0111110.

[29]  Theodor Kaluza,et al.  On the Unification Problem in Physics , 2018, International Journal of Modern Physics D.

[30]  Jonas Mureika Primordial Black Hole Evaporation and Spontaneous Dimensional Reduction , 2012, 1204.3619.

[31]  J. Magueijo,et al.  Dimensional reduction in the sky , 2013, 1305.3153.

[32]  Bianca Dittrich,et al.  The continuum limit of loop quantum gravity - a framework for solving the theory , 2014, 1409.1450.

[33]  Nadir Bizi,et al.  The disappearance of causality at small scale in almost-commutative manifolds , 2014, 1411.0878.

[34]  L. Modesto Fractal spacetime from the area spectrum , 2009 .

[35]  F. Brighenti,et al.  Primordial perturbations in a rainbow universe with running Newton constant , 2016, 1612.06378.

[36]  L. Smolin,et al.  Space-time foam as the universal regulator , 1985 .

[37]  M. Arzano,et al.  Diffusion on \kappa -Minkowski space , 2014, 1404.4762.

[38]  J. Jurkiewicz,et al.  Evidence for asymptotic safety from dimensional reduction in causal dynamical triangulations , 2014, 1411.7712.

[39]  S. Zohren,et al.  Dynamical dimensional reduction in toy models of 4D causal quantum gravity , 2012, 1202.2710.

[40]  Margaret Nichols Trans , 2015, De-centering queer theory.

[41]  S. Carlip Spontaneous Dimensional Reduction , 2012, 1207.4503.

[42]  Gerald V. Dunne,et al.  Heat kernels and zeta functions on fractals , 2012, 1205.2723.

[43]  D. Gross Strings at superplanckian energies: in search of the string symmetry , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[44]  S. Weinberg The Quantum Theory of Fields: THE CLUSTER DECOMPOSITION PRINCIPLE , 1995 .

[45]  Viqar Husain,et al.  High energy modifications of blackbody radiation and dimensional reduction , 2013, 1305.2814.

[46]  G. Calcagni,et al.  Imprint of quantum gravity in the dimension and fabric of spacetime , 2017, 1705.04876.

[47]  Conformal description of horizon's states , 1998, hep-th/9812056.

[48]  L. Smolin,et al.  Renormalization of general relativity on a background of spacetime foam , 1986 .

[49]  D. Stojkovic,et al.  Extending the cascading gravity model to lower dimensions , 2014, 1404.7145.

[50]  T. Padmanabhan,et al.  Spacetime with zero point length is two-dimensional at the Planck scale , 2015, 1507.05669.

[51]  B. Dewitt,et al.  Relativity, Groups, and Topology , 1964 .

[52]  Frank Saueressig,et al.  The R^2 phase-diagram of QEG and its spectral dimension , 2012, 1206.0657.

[53]  S. Carlip Black Hole Thermodynamics , 2014, 1410.1486.

[54]  Rafael D. Sorkin Causal Sets: Discrete Gravity (Notes for the Valdivia Summer School) , 2003 .

[55]  O. Klein,et al.  Quantum Theory and Five-Dimensional Theory of Relativity. (In German and English) , 1926 .

[56]  Gianluca Calcagni,et al.  Multifractional theories: an unconventional review , 2016, 1612.05632.

[57]  S. Weinberg Ultraviolet divergences in quantum theories of gravitation. , 1980 .

[58]  Theodor Kaluza Zum Unitätsproblem der Physik , 1921 .

[59]  Tilman Plehn,et al.  Signatures of gravitational fixed points at the Large Hadron Collider. , 2007, Physical review letters.

[60]  M. Arzano,et al.  Localization and diffusion in polymer quantum field theory , 2014, 1408.2959.

[61]  M. Roček,et al.  Quantum regge calculus , 1981 .

[62]  D. Stojkovic VANISHING DIMENSIONS: A REVIEW , 2013, 1406.2696.

[63]  R. Arnowitt,et al.  Republication of: The dynamics of general relativity , 2004 .

[64]  B. Rothschild,et al.  Asymptotic enumeration of partial orders on a finite set , 1975 .

[65]  S. Carlip The Small Scale Structure of Spacetime , 2010, 1009.1136.

[66]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[67]  On the ultraviolet behaviour of Newton's constant , 2004, hep-th/0401071.

[68]  R. Loll,et al.  De Sitter Universe from Causal Dynamical Triangulations without Preferred Foliation , 2013, 1307.5469.

[69]  Joao Magueijo,et al.  DSR as an explanation of cosmological structure , 2008, 0807.1854.

[70]  O. Zanusso,et al.  Spectral dimensions from the spectral action , 2014, 1410.7999.

[71]  V. Belinskiǐ,et al.  Oscillatory approach to a singular point in the relativistic cosmology , 1970 .

[72]  J. Laiho,et al.  Lattice Quantum Gravity and Asymptotic Safety , 2016, 1604.02745.

[73]  D. Malament The class of continuous timelike curves determines the topology of spacetime , 1977 .

[74]  The Atick–Witten free energy, closed tachyon condensation and deformed Poincaré symmetry , 2002, hep-th/0205014.

[75]  H. Georgi,et al.  (De)constructing dimensions. , 2001, Physical review letters.

[76]  D. Gross,et al.  The High-energy Behavior of Open String Scattering , 1989 .

[77]  Super-Renormalizable Multidimensional Gravity: Theory and Applications , 2013 .

[78]  B. Dewitt Quantum Theory of Gravity. I. The Canonical Theory , 1967 .

[79]  D. Vassilevich,et al.  High energy bosons do not propagate , 2013, 1312.2235.

[80]  L. Modesto Fractal Structure of Loop Quantum Gravity , 2008, 0812.2214.

[81]  S. Mukohyama Scale-invariant cosmological perturbations from Hořava-Lifshitz gravity without inflation , 2009, 0904.2190.

[82]  Michael P. Salem,et al.  Observable effects of anisotropic bubble nucleation , 2010, 1003.0663.

[83]  J. Barrow,et al.  Chaos in the mixmaster universe , 1983 .

[84]  F. Saueressig,et al.  Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation , 2002 .

[85]  Eikonal quantum gravity and planckian scattering , 1992, hep-th/9203082.

[86]  G. Calcagni,et al.  Particle-physics constraints on multifractal spacetimes , 2015, 1512.02621.

[88]  Dierk Schleicher Hausdorff Dimension, Its Properties, and Its Surprises , 2007, Am. Math. Mon..

[89]  Daniel F Litim Fixed points of quantum gravity. , 2004, Physical review letters.

[90]  Joshua H. Cooperman On a renormalization group scheme for causal dynamical triangulations , 2016 .

[91]  F. Brighenti,et al.  Thermal dimension of quantum spacetime , 2016, Physics Letters B.

[92]  David Mattingly,et al.  Modern Tests of Lorentz Invariance , 2005, Living reviews in relativity.

[93]  G. Calcagni Fractal universe and quantum gravity. , 2009, Physical review letters.

[94]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[95]  J. Hatzenbuhler,et al.  DIMENSION THEORY , 1997 .

[96]  J. Atick,et al.  The Hagedorn Transition and the Number of Degrees of Freedom of String Theory , 1988 .

[97]  C. Isham Some quantum field theory aspects of the superspace quantization of general relativity , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[98]  Frank Saueressig,et al.  Quantum gravity signatures in the Unruh effect , 2016, 1605.08015.

[99]  G. Hooft Graviton dominance in ultra-high-energy scattering , 1987 .

[100]  D. Mattingly,et al.  Constraints from cosmic rays on non-systematic Lorentz violation , 2005, astro-ph/0501425.

[101]  Y. Nakayama A lecture note on scale invariance vs conformal invariance , 2013 .

[102]  Jorge Pullin,et al.  Loop Quantum Gravity: The First 30 Years , 2017 .

[103]  H. Snyder,et al.  Quantized Space-Time , 1947 .

[104]  S. Surya,et al.  Echoes of asymptotic silence in causal set quantum gravity , 2017, 1703.08454.

[105]  J. Magueijo,et al.  Reappraisal of a model for deformed special relativity , 2015, 1512.03268.

[106]  Luis J. Garay Quantum Gravity and Minimum Length , 1995 .

[107]  D. Coumbe A Hypothesis on the Nature of Time , 2015, 1502.04320.

[108]  Zeilinger,et al.  Measuring the dimension of space time. , 1985, Physical review letters.

[109]  D. Gross,et al.  String Theory Beyond the Planck Scale , 1988 .

[110]  M. Gorji,et al.  High temperature dimensional reduction in Snyder space , 2015, 1504.07117.

[111]  F. Besnard Two roads to noncommutative causality , 2015, 1508.01917.

[112]  Savas Dimopoulos,et al.  The Hierarchy problem and new dimensions at a millimeter , 1998, hep-ph/9803315.

[113]  L. E. J. Brouwer,et al.  Beweis der Invarianz der Dimensionenzahl , 1911 .

[114]  Universal regular short distance behavior from an interaction with a scale-invariant gravity , 2001, gr-qc/0110076.

[115]  A. Bonanno,et al.  Asymptotically safe cosmology – A status report , 2017, 1702.04137.

[116]  J. Jurkiewicz,et al.  Spectral dimension of the universe , 2005, hep-th/0505113.

[117]  J. Barrow,et al.  Observational constraints on dual intermediate inflation , 2014, 1401.7491.

[118]  Yu Nakayama,et al.  Scale invariance vs conformal invariance , 2013, 1302.0884.

[119]  Chamseddine,et al.  Universal Formula for Noncommutative Geometry Actions: Unification of Gravity and the Standard Model. , 1996, Physical review letters.

[120]  Carlo Pagani,et al.  Composite operators in asymptotic safety , 2016, 1611.06522.

[121]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[122]  S. Carlip Dimensional reduction in causal set gravity , 2015, 1506.08775.

[123]  Frank Saueressig,et al.  Fractal space-times under the microscope: a renormalization group view on Monte Carlo data , 2011, 1110.5224.

[124]  H. Ooguri,et al.  Borel summation of string theory for Planck scale scattering , 1990 .

[125]  V. Oguri,et al.  THE COSMIC MICROWAVE BACKGROUND SPECTRUM AND AN UPPER LIMIT FOR FRACTAL SPACE DIMENSIONALITY , 2008, 0806.2675.

[126]  Daniel Becker,et al.  Propagating gravitons vs. ‘dark matter’ in asymptotically safe quantum gravity , 2014, 1407.5848.

[127]  Bombelli,et al.  Space-time as a causal set. , 1987, Physical review letters.

[128]  L. Randall,et al.  A Large mass hierarchy from a small extra dimension , 1999, hep-ph/9905221.

[129]  S. Carlip Black Hole Entropy from Bondi-Metzner-Sachs Symmetry at the Horizon. , 2017, Physical review letters.

[130]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[131]  J. Miller,et al.  A first look at transition amplitudes in (2 + 1)-dimensional causal dynamical triangulations , 2013, 1305.2932.

[132]  Jourjine Dimensional phase transitions: Coupling of matter to the cell complex. , 1985, Physical review. D, Particles and fields.

[133]  T. Plehn,et al.  Extra Dimensions and their Ultraviolet Completion , 2009, 0912.2653.

[134]  M. Sakellariadou,et al.  Spectral action with zeta function regularization , 2014, 1412.4669.

[135]  M. Rinaldi Observational signatures of pre-inflationary and lower dimensional effective gravity , 2010, 1011.0668.

[136]  A. Görlich,et al.  Characteristics of the new phase in CDT , 2016, The European physical journal. C, Particles and fields.

[137]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[138]  Dynamics of Silent Universes , 1994, astro-ph/9406068.

[139]  V. Belinskiǐ,et al.  A General Solution of the Einstein Equations with a Time Singularity , 1982 .

[140]  G. Landsberg,et al.  Vanishing Dimensions and Planar Events at the LHC , 2010, 1003.5914.

[141]  G. J. Whitrow WHY PHYSICAL SPACE HAS THREE DIMENSIONS* , 1955, The British Journal for the Philosophy of Science.

[142]  M. Henneaux Geometry of Zero Signature Space-times , 1979 .

[143]  J. Jurkiewicz,et al.  New higher-order transition in causal dynamical triangulations , 2017, 1704.04373.

[144]  S. Carlip,et al.  Lower bound on the spectral dimension near a black hole , 2011, 1108.4686.

[145]  Anisotropic Kantowski-Sachs universe from gravitational tunneling and its observational signatures , 2010, 1003.3204.

[146]  Joshua H. Cooperman,et al.  Setting the physical scale of dimensional reduction in causal dynamical triangulations , 2018, Physical Review D.

[147]  TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.

[148]  G. Calcagni,et al.  Spectral dimension of quantum geometries , 2013, 1311.3340.

[149]  Gianluca Calcagni,et al.  Probing the quantum nature of spacetime by diffusion , 2013, 1304.7247.

[150]  A validation of causal dynamical triangulations , 2011, 1110.6875.

[151]  R. Loll,et al.  Discrete Approaches to Quantum Gravity in Four Dimensions , 1998, Living reviews in relativity.

[152]  S. Carlip Spontaneous Dimensional Reduction in Short‐Distance Quantum Gravity? , 2009, 0909.3329.

[153]  G. Calcagni,et al.  Quantum spectral dimension in quantum field theory , 2014, 1408.0199.

[154]  Andreas Nink,et al.  Asymptotic Safety in quantum gravity , 2013, Scholarpedia.

[155]  Z. Xianyu,et al.  Unitary standard model from spontaneous dimensional reduction and weak boson scattering at the LHC , 2011, 1112.1028.

[156]  S. Carlip,et al.  Vacuum fluctuations and the small scale structure of spacetime. , 2011, Physical review letters.

[157]  A. Perez Minimal Length Scale Scenarios for Quantum Gravity , 2013 .

[158]  G. Alencar,et al.  On effective spacetime dimension in the Hořava–Lifshitz gravity , 2015, 1505.05087.

[159]  M. Reuter,et al.  Cosmology of the Planck era from a renormalization group for quantum gravity , 2002 .

[160]  Fractal spacetimes in stochastic gravity? - views from anomalous diffusion and the correlation hierarchy , 2017, 1702.08145.

[161]  A. Kostelecký,et al.  Data Tables for Lorentz and CPT Violation , 2008, 0801.0287.

[162]  J. Cardy Scaling and Renormalization in Statistical Physics , 1996 .

[163]  Weinstein,et al.  Space-time: Arena or illusion? , 1985, Physical review. D, Particles and fields.

[164]  The general solution of the vacuum einstein equation in the limit of strong gravity , 1988 .

[165]  J. Jurkiewicz,et al.  The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.

[166]  L. Andersson,et al.  Asymptotic silence of generic cosmological singularities. , 2004, Physical review letters.

[167]  Susskind String theory and the principle of black hole complementarity. , 1993, Physical review letters.

[168]  C. Chicone,et al.  Cosmic Jets , 2010, 1011.3477.

[169]  Some consequences of the generalised uncertainty principle: statistical mechanical, cosmological, and varying speed of light , 2001, hep-th/0107255.

[170]  Stefano Liberati,et al.  Tests of Lorentz invariance: a 2013 update , 2013, 1304.5795.

[171]  S. Giddings,et al.  Observables, gravitational dressing, and obstructions to locality and subsystems , 2016, 1607.01025.

[172]  The Φ4 quantum field in a scale invariant random metric , 2002, hep-th/0208212.

[173]  Christoph Rahmede,et al.  Further evidence for asymptotic safety of quantum gravity , 2014, 1410.4815.

[174]  Jean-Pierre Antoine,et al.  Functional Integration , 1980, Springer US.

[175]  M. Arzano,et al.  Non-commutative fields and the short-scale structure of spacetime , 2017, 1704.02225.

[176]  J. Synge,et al.  Relativity: The General Theory , 1960 .

[177]  L. Modesto Super-renormalizable Multidimensional Quantum Gravity , 2012, 1202.3151.

[178]  Petr Hořava Spectral dimension of the universe in quantum gravity at a lifshitz point. , 2009, Physical review letters.

[179]  A. Belenchia,et al.  Spectral dimension from nonlocal dynamics on causal sets , 2015, 1507.00330.

[180]  D. Litim Fixed points of quantum gravity , 2003, hep-th/0312114.

[181]  Dario Benedetti,et al.  Fractal properties of quantum spacetime. , 2008, Physical review letters.

[182]  Joe Henson,et al.  Spectral geometry as a probe of quantum spacetime , 2009, 0911.0401.

[183]  J. Scargill An anisotropic universe due to dimension-changing vacuum decay , 2015, 1506.07100.

[184]  B. Müller,et al.  Improved bounds on the dimension of space-time. , 1986, Physical Review Letters.

[185]  A. Görlich,et al.  The semiclassical limit of causal dynamical triangulations , 2011, 1102.3929.

[186]  D. Coumbe Quantum gravity without vacuum dispersion , 2015, 1512.02519.

[187]  David D. Reid Manifold dimension of a causal set: Tests in conformally flat spacetimes , 2003 .

[188]  G. Calcagni,et al.  Dimensional flow in discrete quantum geometries , 2014, 1412.8390.

[189]  W. Unruh Notes on black-hole evaporation , 1976 .

[190]  Bryce S. DeWitt,et al.  Dynamical theory of groups and fields , 1964 .

[191]  K. Stelle Renormalization of Higher Derivative Quantum Gravity , 1977 .

[192]  Y. Pesin On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions , 1993 .

[193]  S. Drake,et al.  Dialogue concerning the Two Chief World Systems , 1954 .

[194]  D. Vassilevich,et al.  Heat kernel expansion: user's manual , 2003, hep-th/0306138.

[195]  Craig Callender,et al.  Answers in search of a question: ‘proofs’ of the tri-dimensionality of space , 2005 .

[196]  J. Mielczarek Asymptotic silence in loop quantum cosmology , 2012, 1212.3527.

[197]  Chuang Liu,et al.  Scaling and Renormalization , 2002 .

[198]  M. Ronco On the UV Dimensions of Loop Quantum Gravity , 2016, 1605.05979.

[199]  M. Maziashvili QUANTUM-GRAVITATIONAL RUNNING/REDUCTION OF THE SPACE–TIME DIMENSION , 2009, 0905.3612.

[200]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[201]  Joshua H. Cooperman Renormalization of lattice-regularized quantum gravity models II. The case of causal dynamical triangulations , 2014, 1406.4531.

[202]  L. Schläfli Theorie der vielfachen Kontinuität , 1901 .