Pure-rotational and rotational-vibrational Raman spectrum of the atmosphere at an altitude of 23 km

Ground-based optical astronomical observations supported by or in the vicinity of laser guide-star systems can be contaminated by Raman-scattered laser photons. Anticipating, alleviating, and correcting for the impact of this self-inflicted contamination requires a detailed knowledge of the pure-rotational and rotational-vibrational spectrum of the molecules in our atmosphere. We present a 15.3hr-deep combined spectrum of the 4LGSF's 589nm $\approx$ 509THz sodium laser beams of Paranal observatory, acquired with the ESPRESSO spectrograph at a resolution $\lambda/\Delta\lambda\cong140'000\approx0.12$ cm$^{-1}$ and an altitude of 23 km above mean sea level. We identify 865 Raman lines over the spectral range of [3770; 7900]{\AA}$\approx$[+9540; -4315] cm$^{-1}$, with relative intensities spanning ~5 orders of magnitudes. These lines are associated to the most abundant molecules of dry air, including their isotopes: 14N14N, 14N15N, 16O16O, 16O17O, 16O18O, and 12C16O16O. The signal-to-noise of these observations implies that professional observatories can treat the resulting catalogue of Raman lines as exhaustive (for the detected molecules, over the observed Raman shift range) for the purpose of predicting/correcting/exploiting Raman lines in astronomical data. Our observations also reveal that the four laser units of the 4LGSF do not all lase at the same central wavelength. [...] The [measured] offsets [...] are larger than the observed 4LGSF spectral stability of $\pm$3 MHz over hours. They remain well within the operational requirements for creating artificial laser guide-stars, but hinder the assessment of the radial velocity accuracy of ESPRESSO at the required level of 10 m/s. Altogether, our observations demonstrate how Raman lines can be exploited by professional observatories as highly-accurate, on-sky wavelength references.

[1]  A. U. Postigo,et al.  Laser Guide Star uplink beam: scattering and Raman emission measurements with the 10.4m Gran Telescopio CANARIAS , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  P. J. Richards,et al.  Gaia Data Release 3. Summary of the content and survey properties , 2022, Astronomy & Astrophysics.

[3]  T. Fusco,et al.  HARMONI: the ELT's First-Light Near-infrared and Visible Integral Field Spectrograph , 2021, 2103.11215.

[4]  M. Esposito,et al.  Measuring and characterizing the line profile of HARPS with a laser frequency comb , 2020, Astronomy & Astrophysics.

[5]  J. L. Rasilla,et al.  ESPRESSO at VLT , 2020 .

[6]  J. L. Rasilla,et al.  ESPRESSO@VLT -- On-sky performance and first results , 2020, 2010.00316.

[7]  K. Rehfeld,et al.  The impact of climate change on astronomical observations , 2020, Nature Astronomy.

[8]  R. Carswell,et al.  A new era of fine structure constant measurements at high redshift , 2020, 2008.10619.

[9]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[10]  Gemini,et al.  The data processing pipeline for the MUSE instrument , 2020, Astronomy & Astrophysics.

[11]  João M. P. Coelho,et al.  ESPRESSO Coudé-Train: ESO's VLT working as 16-metre telescope , 2019, Fourth International Conference on Applications of Optics and Photonics.

[12]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[13]  Gaspare Lo Curto,et al.  Rotational and Rotational-Vibrational Raman Spectroscopy of Air to Characterize Astronomical Spectrographs. , 2019, Physical review letters.

[14]  Romain Thomas,et al.  Dfitspy: a Dfits|fitsort Implementation in Python , 2019, J. Open Source Softw..

[15]  Brett M. Morris,et al.  astroquery: An Astronomical Web-querying Package in Python , 2019, The Astronomical Journal.

[16]  J. Milli,et al.  Raman-scattered laser guide-star photons to monitor the scatter of astronomical telescope mirrors , 2018, Astronomy & Astrophysics.

[17]  Gaetano Sivo,et al.  Confirmation of laser-induced Raman scattering at Cerro Pachón , 2018, Astronomical Telescopes + Instrumentation.

[18]  Y. Minowa,et al.  A 100 pc-scale fast and dense outflow in the narrow-line Seyfert 1 galaxy IRAS 04576+0912 , 2018, Publications of the Astronomical Society of Japan.

[19]  Gaspare Lo Curto,et al.  A fibre scrambling unit for the laser frequency comb of ESPRESSO , 2018, Astronomical Telescopes + Instrumentation.

[20]  Fr'ed'eric P.A. Vogt,et al.  fcmaker: Automating the creation of ESO-compliant finding charts for Observing Blocks on p2 , 2018, Astron. Comput..

[21]  Frédéric P. A. Vogt,et al.  fcmaker: Creating ESO-compliant finding charts for Observing Blocks on p2 , 2018 .

[22]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[23]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[24]  Brett M. Morris,et al.  astroplan: An Open Source Observation Planning Package in Python , 2017, 1712.09631.

[25]  Adam Ginsburg,et al.  Astroquery: Access to online data resources , 2017 .

[26]  H. Kuntschner,et al.  Detection and Implications of Laser-Induced Raman Scattering at Astronomical Observatories , 2017, 1706.07050.

[27]  A. Carnall SpectRes: A Fast Spectral Resampling Tool in Python , 2017, 1705.05165.

[28]  D. Bonaccini Calia,et al.  Laser pointing camera: a valuable tool for the LGS-AO operations , 2016, Astronomical Telescopes + Instrumentation.

[29]  Céline d'Orgeville,et al.  Four generations of sodium guide star lasers for adaptive optics in astronomy and space situational awareness , 2016, Astronomical Telescopes + Instrumentation.

[30]  Roland Geyl,et al.  Thin glass shells for AO: from plano to off-axis aspherics , 2016, Astronomical Telescopes + Instrumentation.

[31]  J. Liske,et al.  Constructing the E-ELT , 2014 .

[32]  B. Drouin,et al.  High resolution spectral analysis of oxygen. IV. Energy levels, partition sums, band constants, RKR potentials, Franck-Condon factors involving the X³Σg⁻, a₁Δg and b¹Σg⁺ states. , 2014, The Journal of chemical physics.

[33]  D. Bonaccini Calia,et al.  Laser guide star pointing camera for ESO LGS Facilities , 2014, Astronomical Telescopes and Instrumentation.

[34]  Patrick Leisching,et al.  Series production of next-generation guide-star lasers at TOPTICA and MPBC , 2014, Astronomical Telescopes and Instrumentation.

[35]  Ronald Holzlöhner,et al.  The Four-Laser Guide Star Facility: Design considerations and system implementation , 2014 .

[36]  Christophe Dupuy,et al.  The ESO Adaptive Optics Facility under Test , 2013 .

[37]  W. Freudling,et al.  Automated data reduction workflows for astronomy , 2013, 1311.5411.

[38]  Ben M. Elliott,et al.  High resolution spectral analysis of oxygen. III. Laboratory investigation of the airglow bands. , 2013, The Journal of chemical physics.

[39]  M. Mannetta,et al.  ESPRESSO — An Echelle SPectrograph for Rocky Exoplanets Search and Stable Spectroscopic Observations , 2013 .

[40]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[41]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[42]  Marco Riva,et al.  ESPRESSO front end opto-mechanical configuration , 2012, Other Conferences.

[43]  Wilhelm Kaenders,et al.  RFA-based 589-nm guide star lasers for ESO VLT: a paradigm shift in performance, operational simplicity, reliability, and maintenance , 2012, Other Conferences.

[44]  T. Robitaille,et al.  APLpy: Astronomical Plotting Library in Python , 2012 .

[45]  H. Müller,et al.  High resolution spectral analysis of oxygen. II. Rotational spectra of a(1)Δ(g)  O2 isotopologues. , 2012, The Journal of chemical physics.

[46]  H. Müller,et al.  High resolution spectral analysis of oxygen. I. Isotopically invariant Dunham fit for the X(3)Σ(g)(-), a(1)Δ(g), b(1)Σ(g)(+) states. , 2012, The Journal of chemical physics.

[47]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[48]  M. Kasper,et al.  Adaptive Optics for Astronomy , 2012, 1201.5741.

[49]  M. Loupias,et al.  The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.

[50]  Paola Amico,et al.  Laser operations at the 8-10m class telescopes Gemini, Keck, and the VLT: lessons learned, old and new challenges , 2010, Astronomical Telescopes + Instrumentation.

[51]  Jean-Louis Lizon,et al.  ESPRESSO: the Echelle spectrograph for rocky exoplanets and stable spectroscopic observations , 2010, Astronomical Telescopes + Instrumentation.

[52]  Ronald Holzlöhner,et al.  Laser Development for Sodium Laser Guide Stars at ESO , 2010 .

[53]  R. Holzlohner,et al.  Optimization of cw sodium laser guide star efficiency , 2009, 0908.1527.

[54]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[55]  Calvin Jary,et al.  An accurate analytic potential function for ground-state N2 from a direct-potential-fit analysis of spectroscopic data. , 2006, The Journal of chemical physics.

[56]  F. Patat,et al.  UBVRI twilight sky brightness at ESO-Paranal ? , 2006, astro-ph/0604128.

[57]  Brooke Gregory,et al.  Implementation of a laser traffic control system supporting laser guide star adaptive optics on Mauna Kea , 2003, SPIE Astronomical Telescopes + Instrumentation.

[58]  Naruhisa Takato,et al.  Rayleigh scatter measurement of Keck LGS by Subaru telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[59]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[60]  Jesus J. Fuensalida,et al.  Rayleigh scattering profiles with altitude at Teide Observatory produced by laser , 2000, Astronomical Telescopes and Instrumentation.

[61]  Mireille Louys,et al.  The ALADIN interactive sky atlas - A reference tool for identification of astronomical sources , 2000 .

[62]  F. Ochsenbein,et al.  The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.

[63]  Bernard Muschielok,et al.  Successful Commissioning of FORS1 - the First Optical Instrument on the VLT , 1998 .

[64]  B. Maté,et al.  Overtone Raman spectrum and molecular polarizability surface of CO2 , 1995 .

[65]  Robert K. Tyson,et al.  Adaptive optics compensation of atmospheric turbulence: the past, the present, and the promise , 1994, Defense, Security, and Sensing.

[66]  Lee C. Bradley,et al.  Pulse-train excitation of sodium for use as a synthetic beacon , 1992 .

[67]  G. Millot,et al.  High-resolution stimulated Raman spectroscopy of O2 , 1992 .

[68]  Oberto Citterio,et al.  Active optics. II. Results of an experiment with a thin 1 m test mirror. , 1988 .

[69]  Lothar Noethe,et al.  Active Optics: I. A System for Optimizing the Optical Quality and Reducing the Costs of Large Telescopes , 1987 .

[70]  Antoine Labeyrie,et al.  Feasibility of adaptive telescope with laser probe , 1985 .

[71]  R. A. Hill,et al.  High-resolution stimulated Raman spectroscopy of O2 , 1983 .

[72]  R. A. Hill Effect of satellite Q-branches on temperatures computed from oxygen vibrational raman intensities , 1979 .

[73]  R. G. Talbot,et al.  Photometry and Spectrum measurements of the Laser Guide Star beam emission at Observatorio del Roque de Los Muchachos with the Gran Telescopio CANARIAS , 2017 .

[74]  Wes McKinney,et al.  Data Structures for Statistical Computing in Python , 2010, SciPy.

[75]  W. A. Joye,et al.  New Features of SAOImage DS9 , 2003 .

[76]  N. Hubin,et al.  LGS Light Pollution Investigation in Calar Alto , 1999 .

[77]  Joseph J. Barrett,et al.  Pure-Rotational Raman Scattering in a CO 2 Electric Discharge , 1970 .

[78]  C. Rupert Mathematics of the reflecting telescope , 1918 .