A Biomass-Derived Non-Noble Cobalt Catalyst for Selective Hydrodehalogenation of Alkyl and (Hetero)Aryl Halides.

Hydrodehalogenation is a straightforward approach for detoxifications of harmful anthropogenic organohalide-based pollutants, as well as removal of halide protecting groups used in multistep syntheses. A novel sustainable catalytic material was prepared from biowaste (chitosan) in combination with an earth-abundant cobalt salt. The heterogeneous catalyst was fully characterized by transmission electron microscope, X-ray diffraction, and X-ray photoelectron spectroscopy measurements, and successfully applied to hydrodehalogenation of alkyl and (hetero)aryl halides with broad scope (>40 examples) and excellent chemoselectivity using molecular hydrogen as a reductant. The general usefulness of this method is demonstrated by successful detoxification of non-degradable pesticides and fire retardants. Moreover, the potential of the catalyst as a deprotection tool is demonstrated in a multistep synthesis of (±)-peronatin B (alkaloid).

[1]  F. Glorius,et al.  Long Alkyl Chain NHC Palladium Complexes for the Amination and Hydrodehalogenation of Aryl Chlorides in Lipophilic Media , 2017 .

[2]  H. Hirao,et al.  Hydrodehalogenation of Haloarenes by a Sodium Hydride-Iodide Composite. , 2017, Angewandte Chemie.

[3]  Yuanzhi Xia,et al.  Transfer Hydro-dehalogenation of Organic Halides Catalyzed by Ruthenium(II) Complex. , 2017, The Journal of organic chemistry.

[4]  M. Beller,et al.  Hydrogenation of Esters to Alcohols Catalyzed by Defined Manganese Pincer Complexes. , 2016, Angewandte Chemie.

[5]  M. Beller,et al.  Synthese, Charakterisierung und Anwendungen von Metall-Nanopartikeln nach Fixierung auf N-dotiertem Kohlenstoff: Katalyse jenseits der Elektrochemie , 2016 .

[6]  H. Neumann,et al.  Synthesis, Characterization, and Application of Metal Nanoparticles Supported on Nitrogen-Doped Carbon: Catalysis beyond Electrochemistry. , 2016, Angewandte Chemie.

[7]  N. Yan,et al.  Shell Biorefinery: Dream or Reality? , 2016, Chemistry.

[8]  P. Renaud,et al.  Catechols as Sources of Hydrogen Atoms in Radical Deiodination and Related Reactions. , 2016, Angewandte Chemie.

[9]  C. Stephenson,et al.  Light-Mediated Reductive Debromination of Unactivated Alkyl and Aryl Bromides , 2016 .

[10]  M. Beller,et al.  Stable and Inert Cobalt Catalysts for Highly Selective and Practical Hydrogenation of C≡N and C═O Bonds. , 2016, Journal of the American Chemical Society.

[11]  M. Beller,et al.  Fe2O3/NGr@C- and Co–Co3O4/NGr@C-catalysed hydrogenation of nitroarenes under mild conditions , 2016 .

[12]  A. Studer,et al.  Radical Hydrodeiodination of Aryl, Alkenyl, Alkynyl, and Alkyl Iodides with an Alcoholate as Organic Chain Reductant through Electron Catalysis. , 2016, Angewandte Chemie.

[13]  Y. Liu,et al.  Comparative study on catalytic hydrodehalogenation of halogenated aromatic compounds over Pd/C and Raney Ni catalysts , 2016, Scientific Reports.

[14]  Ryota Ueno,et al.  Reduction of Aryl Halides into Arenes with 2-Propanol Promoted by a Substoichiometric Amount of a tert-Butoxy Radical Source , 2016, Synlett.

[15]  Y. Diskin‐Posner,et al.  Cobalt-catalyzed hydrogenation of esters to alcohols: unexpected reactivity trend indicates ester enolate intermediacy. , 2015, Angewandte Chemie.

[16]  Tao Zhang,et al.  Co–N–C Catalyst for C–C Coupling Reactions: On the Catalytic Performance and Active Sites , 2015 .

[17]  T. Zell,et al.  Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization. , 2015, Accounts of chemical research.

[18]  P. Chirik Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands. , 2015, Accounts of chemical research.

[19]  K. Chan,et al.  Cobalt porphyrin catalyzed hydrodehalogenation of aryl bromides with KOH , 2015 .

[20]  S. Liao,et al.  Base-Free Oxidation of Alcohols to Esters at Room Temperature and Atmospheric Conditions using Nanoscale Co-Based Catalysts , 2015 .

[21]  B. Lipshutz,et al.  Ligand-free, palladium-catalyzed dihydrogen generation from TMDS: dehalogenation of aryl halides on water. , 2015, Organic letters.

[22]  B. Lipshutz,et al.  Dehalogenation of Functionalized Alkyl Halides in Water at Room Temperature. , 2015, Green chemistry : an international journal and green chemistry resource : GC.

[23]  Huijun Zhao,et al.  Transforming chitosan into N-doped graphitic carbon electrocatalysts. , 2015, Chemical communications.

[24]  K. Fisher,et al.  Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation , 2014, Nature.

[25]  B. König,et al.  Reduction of aryl halides by consecutive visible light-induced electron transfer processes , 2014, Science.

[26]  H. Dobbek,et al.  Structural basis for organohalide respiration , 2014, Science.

[27]  Kihun Jeong,et al.  Catalytic C–F Bond Hydrogenolysis of Fluoroaromatics by [(η5-C5Me5)RhI(2,2′-bipyridine)] , 2014 .

[28]  J. McMurray,et al.  Hydrodehalogenation of Alkyl Iodides with Base-Mediated Hydrogenation and Catalytic Transfer Hydrogenation: Application to the Asymmetric Synthesis of N-Protected α-Methylamines , 2014, The Journal of organic chemistry.

[29]  Henrik Junge,et al.  Hydrierung von Estern zu Alkoholen mit einem definierten Eisenkomplex , 2014 .

[30]  M. Beller,et al.  Hydrogenation of esters to alcohols with a well-defined iron complex. , 2014, Angewandte Chemie.

[31]  L. Gade,et al.  Stereoselective hydrodehalogenation via a radical-based mechanism involving T-shaped chiral nickel(I) pincer complexes. , 2014, Chemistry.

[32]  Chong-Min Wang,et al.  In-Situ TEM visualization of vacancy injection and chemical partition during oxidation of Ni-Cr nanoparticles , 2014, Scientific Reports.

[33]  R. Bullock Abundant Metals Give Precious Hydrogenation Performance , 2013, Science.

[34]  Shane W. Krska,et al.  Cobalt Precursors for High-Throughput Discovery of Base Metal Asymmetric Alkene Hydrogenation Catalysts , 2013, Science.

[35]  M. Beller,et al.  Nanoscale Fe2O3-Based Catalysts for Selective Hydrogenation of Nitroarenes to Anilines , 2013, Science.

[36]  M. Beller,et al.  Selective oxidation of alcohols to esters using heterogeneous Co3O4-N@C catalysts under mild conditions. , 2013, Journal of the American Chemical Society.

[37]  M. Beller,et al.  Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes , 2013, Nature Chemistry.

[38]  Longxin Chen,et al.  Synthesis of modified carbon nanotube-supported Pd and the catalytic performance for hydrodehalogenation of aryl halides , 2013 .

[39]  S. Enthaler,et al.  Nickel-catalyzed hydrodehalogenation of aryl halides , 2013 .

[40]  Youquan Deng,et al.  Development of a general non-noble metal catalyst for the benign amination of alcohols with amines and ammonia. , 2013, Chemistry.

[41]  Wenwen Zhao,et al.  NiCl2(PCy3)2-catalyzed hydrodefluorination of fluoroarenes with LiAl(O-t-Bu)3H , 2013 .

[42]  John D. Nguyen,et al.  Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions , 2012, Nature Chemistry.

[43]  Ana Primo,et al.  From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. , 2012, Chemical communications.

[44]  Zu-Jin Lin,et al.  Facile synthesis of palladium nanoparticles encapsulated in amine-functionalized mesoporous metal–organic frameworks and catalytic for dehalogenation of aryl chlorides , 2012 .

[45]  Wenwen Zhao,et al.  Highly Efficient Nickel(II) Chloride/Bis(tricyclohexylphosphine)nickel(II) Chloride-Cocatalyzed Hydrodefluorination of Fluoroarenes and Trifluorotoluenes with Superhydride , 2012 .

[46]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[47]  Li Zhao,et al.  Sustainable nitrogen-doped carbonaceous materials from biomass derivatives , 2010 .

[48]  A. Vallribera,et al.  Dehalogenation and Hydrogenation of Aromatic Compounds Catalyzed by Nanoparticles Generated from Rhodium Bis(imino)pyridine Complexes , 2010 .

[49]  A. Jacobi von Wangelin,et al.  Practical iron-catalyzed dehalogenation of aryl halides. , 2010, Chemical communications.

[50]  Yunqing Lin,et al.  Total synthesis of diverse carbogenic complexity within the resveratrol class from a common building block. , 2009, Journal of the American Chemical Society.

[51]  William S. Price,et al.  NMR diffusion measurements of complex systems , 2009 .

[52]  T. Takido,et al.  Hydrodechlorination of para-substituted chlorobenzenes over a ruthenium/carbon catalyst , 2008 .

[53]  P. Andersson,et al.  Modern Reduction Methods , 2008 .

[54]  Margit Zacharias,et al.  Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review. , 2007, Small.

[55]  V. D. Shteingarts Recent Advances in Practice and Theory of Polyfluoroarene Hydrodehalogenation , 2007 .

[56]  Yumin Du,et al.  Chitosan- metal complexes as antimicrobial agent: Synthesis, characterization and Structure-activity study , 2005 .

[57]  K. Ebitani,et al.  Highly efficient dehalogenation using hydroxyapatite-supported palladium nanocluster catalyst with molecular hydrogen , 2004 .

[58]  Tamotsu Takahashi,et al.  Iron-Catalyzed Dechlorination of Aryl Chlorides , 2004 .

[59]  Xinmiao Liang,et al.  Pd/C-catalyzed hydrodehalogenation of aromatic halides in aqueous solutions at room temperature under normal pressure , 2004 .

[60]  John F. Kennedy,et al.  Metal complexation by chitosan and its derivatives: a review , 2004 .

[61]  E. Guibal,et al.  Chitosan-Supported Palladium Catalyst. II. Chlorophenol Dehalogenation , 2003 .

[62]  P. Knochel,et al.  Synthese hoch funktionalisierter Organomagnesiumreagentien durch Halogen-Metall-Austausch , 2003 .

[63]  P. Knochel,et al.  Highly functionalized organomagnesium reagents prepared through halogen-metal exchange. , 2003, Angewandte Chemie.

[64]  Ken-Ichi Fujita,et al.  Chemoselective transfer hydrodechlorination of aryl chlorides catalyzed by Cp*Rh complexes. , 2002, Chemical communications.

[65]  I. Beletskaya,et al.  Metal-mediated reductive hydrodehalogenation of organic halides. , 2002, Chemical reviews.

[66]  F. Effenberger Wie attraktiv ist Brom als Schutzgruppe in der Aromatenchemie , 2002 .

[67]  F. Effenberger How attractive is bromine as a protecting group in aromatic chemistry? , 2002, Angewandte Chemie.

[68]  Y. Mitoma,et al.  Dehalogenation of aromatic halides using metallic calcium in ethanol. , 2001, Environmental science & technology.

[69]  V. V. Chesnokov,et al.  Decomposition of Chlorinated Hydrocarbons on Iron-Group Metals , 2001 .

[70]  A. Dobbs Total synthesis of indoles from Tricholoma species via Bartoli/heteroaryl radical methodologies. , 2001, The Journal of organic chemistry.

[71]  R. Grubbs,et al.  Catalytic Dehalogenation of Aryl Chlorides Mediated by Ruthenium(II) Phosphine Complexes , 1999 .

[72]  S. Stachel,et al.  Synthesis and Isomerization of Biindolinones from Collybia peronata and Tricholoma scalpturatum , 1997 .

[73]  F. Joó,et al.  Transfer hydrodehalogenation of organic halides catalyzed by water soluble ruthenium(II) phosphine complexes , 1997 .

[74]  S. S. Baghel,et al.  REDUCTIVE DECHLORINATION OF CHLORINATED AROMATICS , 1993 .

[75]  J. Bunnett Radical-Chain, Electron-Transfer Dehalogenation Reactions , 2010 .

[76]  W. Bailey,et al.  The mechanism of the lithium-halogen interchange reaction: a review of the literature , 1988 .

[77]  P. Rylander Catalytic Hydrogenation in Organic Syntheses , 1979 .