Shortcuts to adiabatic passage for multiqubit controlled-phase gate

We propose an alternative scheme of shortcuts to a quantum controlled phase gate in a much shorter time based on the approach of Lewis-Riesenfeld invariants in cavity quantum electrodynamics systems. This scheme can be used to perform a one-qubit phase gate, a two-qubit controlled phase gate, as well as a multiqubit controlled phase gate. The strict numerical simulations demonstrate that the total operation time for implementing controlled phase gates is much shorter than previous schemes and very robust against decoherence.

[1]  H. R. Lewis,et al.  An Exact Quantum Theory of the Time‐Dependent Harmonic Oscillator and of a Charged Particle in a Time‐Dependent Electromagnetic Field , 1969 .

[2]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[3]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[4]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[5]  M. Shahriar,et al.  Solid State Quantum Computing Using Spectral Holes , 2000, quant-ph/0007074.

[6]  Vladimir Buzek,et al.  Multiparticle entanglement with quantum logic networks: Application to cold trapped ions , 2001 .

[7]  K. Ichimura A simple frequency-domain quantum computer with ions in a crystal coupled to a cavity mode , 2001 .

[8]  Quantum Computation with “Hot” Trapped Ions , 2002 .

[9]  Z. Kis,et al.  Qubit rotation by stimulated Raman adiabatic passage , 2002, quant-ph/0307208.

[10]  H. Ruda,et al.  Multiqubit computing and error-avoiding codes in subspace using quantum dots , 2002 .

[11]  Herbert Walther,et al.  Quantum computation with trapped ions in an optical cavity. , 2002, Physical review letters.

[12]  Chui-Ping Yang,et al.  Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED , 2003, 1403.4037.

[13]  Quantum logic between atoms inside a high-Q optical cavity , 2002, quant-ph/0209096.

[14]  Guang-Can Guo,et al.  Experimental teleportation of a quantum controlled-NOT gate. , 2004, Physical review letters.

[15]  Hayato Goto,et al.  Multiqubit controlled unitary gate by adiabatic passage with an optical cavity , 2004 .

[16]  Shi-Biao Zheng Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation. , 2005, Physical review letters.

[17]  S. Spillane,et al.  Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics (10 pages) , 2004, quant-ph/0410218.

[18]  Siyuan Han,et al.  Realization of an n -qubit controlled- U gate with superconducting quantum interference devices or atoms in cavity QED , 2006 .

[19]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[20]  M. A. Lohe Exact time dependence of solutions to the time-dependent Schrödinger equation , 2009 .

[21]  J. G. Muga,et al.  Shortcut to adiabatic passage in two- and three-level atoms. , 2010, Physical review letters.

[22]  Karl Heinz Hoffmann,et al.  Time-optimal controls for frictionless cooling in harmonic traps , 2011 .

[23]  Patrizia Vignolo,et al.  Shortcut to adiabaticity for an interacting Bose-Einstein condensate , 2010, 1009.5868.

[24]  A S Sørensen,et al.  Dissipative preparation of entanglement in optical cavities. , 2010, Physical review letters.

[25]  A Walther,et al.  Controlling fast transport of cold trapped ions. , 2012, Physical review letters.

[26]  D. Alonso,et al.  Optimally robust shortcuts to population inversion in two-level quantum systems , 2012, 1206.1691.

[27]  K. Mølmer,et al.  Robust Rydberg interaction gates with adiabatic passage , 2013, 1311.5147.

[28]  Nikolay V. Vitanov,et al.  Arbitrary qudit gates by adiabatic passage , 2013 .

[29]  Shi-Biao Zheng,et al.  Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction , 2013 .

[30]  A. Campo,et al.  Shortcuts to adiabaticity by counterdiabatic driving. , 2013, Physical review letters.

[31]  Yan Xia,et al.  Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems , 2014, 1401.4291.

[32]  Lituo Shen,et al.  Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity , 2013, 1310.5323.

[33]  Yan Xia,et al.  Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states , 2014, 1410.8285.

[34]  Jin-Lei Wu,et al.  Fast generations of tree-type three-dimensional entanglement via Lewis-Riesenfeld invariants and transitionless quantum driving , 2016, Scientific Reports.