Representation theory of so(4,2) for the perturbation treatment of hydrogenic‐type hamiltonians by algebraic methods

The representations of so(4,2) which are applicable to the perturbation treatment of one-electron Hamiltonians of the form H = H0 + λV are discussed, where H0 is a hydrogenic Hamiltonian. A unified construction of the representations of so(2,1) and so(3) is outlined and the representations of so(4) [and also so(3,1)] are then obtained using both the vector operator method and angular momentum recoupling techniques. The merging of so(2,1) and so(4) then leads in a natural way to so(4,2). An outline of perturbation theory applications such as the Stark and Zeeman effects is also given.

[1]  E. Vrscay,et al.  Large order perturbation theory in the context of atomic and molecular physics—interdisciplinary aspects , 1982 .

[2]  J. Cizek,et al.  Asymptotic behavior of the ground-state-energy expansion for H/sub 2/ /sup +/ in terms of internuclear separation , 1980 .

[3]  B. G. Adams,et al.  Bender-Wu formulas for degenerate eigenvalues , 1980 .

[4]  B. G. Adams,et al.  The Use of Algebraic Methods in Perturbation Theory , 1980 .

[5]  B. G. Adams,et al.  Stark Effect in Hydrogen: Dispersion Relation, Asymptotic Formulas, and Calculation of the Ionization Rate via High-Order Perturbation Theory , 1979 .

[6]  B. G. Adams,et al.  Bender-Wu Formula, the SO(4,2) Dynamical Group, and the Zeeman Effect in Hydrogen , 1979 .

[7]  H. Silverstone Perturbation theory of the Stark effect in hydrogen to arbitrarily high order , 1978 .

[8]  J. Cizek,et al.  An algebraic approach to bound states of simple one‐electron systems , 1977 .

[9]  A. Bechler Group theoretic approach to the screened Coulomb problem , 1977 .

[10]  Bruno Klahn,et al.  The convergence of the Rayleigh-Ritz Method in quantum chemistry , 1977 .

[11]  B. G. Wybourne,et al.  Classical Groups for Physicists , 1974 .

[12]  M Bednář,et al.  Algebraic treatment of quantum-mechanical models with modified Coulomb potentials , 1973 .

[13]  H. McIntosh Symmetry and Degeneracy , 1971 .

[14]  A. Barut,et al.  Reduction of a Class of O(4, 2) Representations with Respect to SO(4, 1) and SO(3, 2) , 1970 .

[15]  H. Bacry,et al.  Partial Group‐Theoretical Treatment for the Relativistic Hydrogen Atom , 1967 .

[16]  A. Böhm Dynamical groups of simple nonrelativistic models , 1966 .

[17]  R. A. Minlos,et al.  Representations of the Rotation and Lorentz Groups and Their Applications , 1965 .

[18]  A. Barut,et al.  On non-compact groups. II. Representations of the 2+1 Lorentz group , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[19]  L. Biedenharn Wigner Coefficients for the R4 Group and Some Applications , 1961 .

[20]  P. Löwdin,et al.  Superposition of Configurations and Natural Spin Orbitals. Applications to the He Problem , 1959 .

[21]  A. Dalgarno,et al.  On the perturbation theory of small disturbances , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[22]  A. Dalgarno,et al.  A perturbation calculation of properties of the 1sσ and 2pσ states of HeH2+ , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  Harrison Shull,et al.  NATURAL ORBITALS IN THE QUANTUM THEORY OF TWO-ELECTRON SYSTEMS , 1956 .

[24]  A. Dalgarno,et al.  The exact calculation of long-range forces between atoms by perturbation theory , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  V. Bargmann,et al.  Zur Theorie des Wasserstoffatoms , 1936 .

[26]  W. Jr. Pauli,et al.  Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik , 1926 .