Coupled Fluid Density and Motion from Single Views

We present a novel method to reconstruct a fluid's 3D density and motion based on just a single sequence of images. This is rendered possible by using powerful physical priors for this strongly under‐determined problem. More specifically, we propose a novel strategy to infer density updates strongly coupled to previous and current estimates of the flow motion. Additionally, we employ an accurate discretization and depth‐based regularizers to compute stable solutions. Using only one view for the reconstruction reduces the complexity of the capturing setup drastically and could even allow for online video databases or smart‐phone videos as inputs. The reconstructed 3D velocity can then be flexibly utilized, e.g., for re‐simulation, domain modification or guiding purposes. We will demonstrate the capacity of our method with a series of synthetic test cases and the reconstruction of real smoke plumes captured with a Raspberry Pi camera.

[1]  Marcus A. Magnor,et al.  Adaptive grid optical tomography , 2006, Graph. Model..

[2]  Pradeep Dubey,et al.  Large-scale fluid simulation using velocity-vorticity domain decomposition , 2012, ACM Trans. Graph..

[3]  Huamin Wang,et al.  Physically guided liquid surface modeling from videos , 2009, ACM Trans. Graph..

[4]  Kiriakos N. Kutulakos,et al.  Dynamic Refraction Stereo , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[6]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[7]  Ming C. Lin,et al.  Fast animation of turbulence using energy transport and procedural synthesis , 2008, SIGGRAPH Asia '08.

[8]  Gordon Wetzstein,et al.  ProxImaL , 2016, ACM Trans. Graph..

[9]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[10]  Nils Thürey,et al.  Generating Liquid Simulations with Deformation-aware Neural Networks , 2017, ICLR.

[11]  Bernhard Wieneke,et al.  Tomographic particle image velocimetry , 2006 .

[12]  Derek Nowrouzezahrai,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2006) a Controllable, Fast and Stable Basis for Vortex Based Smoke Simulation , 2022 .

[13]  Nancy Argüelles,et al.  Author ' s , 2008 .

[14]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[15]  Wolfgang Heidrich,et al.  From capture to simulation , 2014, ACM Trans. Graph..

[16]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[17]  Marcus A. Magnor,et al.  Image-based tomographic reconstruction of flames , 2004, SIGGRAPH '04.

[18]  Patrick Pérez,et al.  Dense Estimation of Fluid Flows , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[20]  Hujun Bao,et al.  Interactive localized liquid motion editing , 2013, ACM Trans. Graph..

[21]  Javier Sánchez Pérez,et al.  Horn-Schunck Optical Flow with a Multi-Scale Strategy , 2013, Image Process. Line.

[22]  Marcus A. Magnor,et al.  Fast Image‐Based Modeling of Astronomical Nebulae , 2013, Comput. Graph. Forum.

[23]  M. Glas,et al.  Principles of Computerized Tomographic Imaging , 2000 .

[24]  Adrien Treuille,et al.  Fluid control using the adjoint method , 2004, ACM Trans. Graph..

[25]  Xiong Dun,et al.  Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging , 2017, ACM Trans. Graph..

[26]  Ronald Fedkiw,et al.  Practical animation of liquids , 2001, SIGGRAPH.

[27]  Ken-ichi Anjyo,et al.  Fluid volume modeling from sparse multi-view images by appearance transfer , 2015, ACM Trans. Graph..

[28]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[29]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[30]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[31]  Rahul Narain,et al.  ADMM ⊇ projective dynamics: fast simulation of general constitutive models , 2016, Symposium on Computer Animation.

[32]  Nils Thürey,et al.  Pre-computed Liquid Spaces with Generative Neural Networks and Optical Flow , 2017, ArXiv.

[33]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[34]  Nils Thürey,et al.  Interpolations of Smoke and Liquid Simulations , 2016, TOGS.

[35]  Doug L. James,et al.  Wavelet turbulence for fluid simulation , 2008, SIGGRAPH 2008.

[36]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[37]  Daniel Cremers,et al.  Stereoscopic Scene Flow for 3D Motion Analysis , 2011 .

[38]  Hans-Peter Seidel,et al.  3D Reconstruction of Emission and Absorption in Planetary Nebulae , 2007, VG@Eurographics.

[39]  Tiffany Inglis,et al.  Primal‐Dual Optimization for Fluids , 2016, Comput. Graph. Forum.

[40]  Wenbin Li,et al.  Dense Motion Estimation for Smoke , 2016, ACCV.

[41]  Hans-Peter Seidel,et al.  Time-resolved 3d capture of non-stationary gas flows , 2008, SIGGRAPH Asia '08.

[42]  Ignacio Llamas,et al.  FlowFixer: Using BFECC for Fluid Simulation , 2005, NPH.

[43]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[44]  Wolfgang Heidrich,et al.  Stochastic tomography and its applications in 3D imaging of mixing fluids , 2012, ACM Trans. Graph..

[45]  Kiriakos N. Kutulakos,et al.  Dynamic Refraction Stereo , 2005, ICCV.

[46]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.