Solving metamaterial Maxwell's equations via a vector wave integro-differential equation

In this paper, we discuss the time-domain metamaterial Maxwell's equations. One major contribution of this paper is that after some effort we find that the metamaterial Maxwell's equations can be beautifully reduced to a vector wave integro-differential equation involving just one unknown, which is quite similar to that obtained from the standard Maxwell's equations in vacuum. Then we study the existence and uniqueness of this new modeling equations, and propose a fully-discrete finite element method to solve this model. Numerical results justifying our analysis are presented. This discovery shall make simulation of metamaterials much more efficient than the previous works.

[1]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[2]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[3]  Jichun Li,et al.  Mathematical and numerical study of wave propagation in negative-index materials , 2008 .

[4]  M. Raffetto,et al.  WELL-POSEDNESS AND FINITE ELEMENT APPROXIMABILITY OF TIME-HARMONIC ELECTROMAGNETIC BOUNDARY VALUE PROBLEMS INVOLVING BIANISOTROPIC MATERIALS AND METAMATERIALS , 2009 .

[5]  Jun Zou,et al.  Fully discrete finite element approaches for time-dependent Maxwell's equations , 1999, Numerische Mathematik.

[6]  Wei Yang,et al.  Developing a time-domain finite-element method for modeling of electromagnetic cylindrical cloaks , 2012, J. Comput. Phys..

[7]  Philippe G. Ciarlet,et al.  Two- and three-field formulations for wave transmission between media with opposite sign dielectric constants , 2007 .

[8]  Harvey Thomas Banks,et al.  Analysis of stability and dispersion in a finite element method for Debye and Lorentz dispersive media , 2009 .

[9]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[10]  Ralf Hiptmair,et al.  Discrete Compactness for the p-Version of Discrete Differential Forms , 2009, SIAM J. Numer. Anal..

[11]  L. Fezoui,et al.  Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .

[12]  Zhonghua Qiao,et al.  Superconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell’s Equations , 2011, J. Sci. Comput..

[13]  Jichun Li Numerical convergence and physical fidelity analysis for Maxwell’s equations in metamaterials , 2009 .

[14]  Ya Zhang,et al.  Multiscale Computations for 3D Time-Dependent Maxwell's Equations in Composite Materials , 2010, SIAM J. Sci. Comput..

[15]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[16]  R. Mittra,et al.  FDTD Modeling of Metamaterials: Theory and Applications , 2008 .

[17]  Joseph E. Pasciak,et al.  Analysis of a Multigrid Algorithm for Time Harmonic Maxwell Equations , 2004, SIAM J. Numer. Anal..

[18]  Pingwen Zhang,et al.  Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions , 2004 .

[19]  Vincent Fusco,et al.  Electromagnetic Metamaterials: Physics and Engineering Explorations (Engheta, N. and Ziolkowski, R.W.; 2006) [Book Review] , 2007, IEEE Antennas and Propagation Magazine.

[20]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[21]  Zhimin Zhang,et al.  Error analysis of a discontinuous Galerkin method for Maxwell equations in dispersive media , 2010, J. Comput. Phys..

[22]  David R. Smith,et al.  Metamaterials: Theory, Design, and Applications , 2009 .

[23]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[24]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[25]  Simon Shaw,et al.  Finite Element Approximation of Maxwell's Equations with Debye Memory , 2010, Adv. Numer. Anal..

[26]  Jichun Li,et al.  Mathematical Simulation of Metamaterial Solar Cells , 2011 .

[27]  Yunqing Huang,et al.  Interior penalty DG methods for Maxwell's equations in dispersive media , 2011, J. Comput. Phys..

[28]  Costas M. Soukoulis,et al.  Wave Propagation: From Electrons to Photonic Crystals and Left-Handed Materials , 2008 .

[29]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[30]  S. Lanteri,et al.  Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media. , 2013 .

[31]  P. Deuflhard,et al.  Adaptive Multilevel Methods for Edge Element Discretizations of Maxwell's Equations , 1997 .

[32]  Ilaria Perugia,et al.  Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.

[33]  Weiying Zheng,et al.  An Adaptive Finite Element Method for the H- ψ Formulation of Time-dependent Eddy Current Problems , 2006, Numerische Mathematik.