Fast Quantum Modular Exponentiation Architecture for Shor's Factorization Algorithm

We present a novel and efficient in terms of circuit depth design for Shor's quantum factorization algorithm. The circuit effectively utilizes a diverse set of adders based on the quantum Fourier transform (QFT) Draper's adders to build more complex arithmetic blocks: quantum multiplier/accumulators by constants and quantum dividers by constants. These arithmetic blocks are effectively architected into a generic modular quantum multiplier which is the fundamental block for modular exponentiation circuit, the most computational intensive part of Shor's algorithm. The proposed modular exponentiation circuit has a depth of about $2000n^{2}$ and requires $9n+2$ qubits, where $n$ is the number of bits of the classical number to be factored. The total quantum cost of the proposed design is $1600n^{3}$. The circuit depth can be further decreased by more than three times if the approximate QFT implementation of each adder unit is exploited.

[1]  T.C.Ralph,et al.  Efficient Toffoli Gates Using Qudits , 2008, 0806.0654.

[2]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[3]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[4]  R. V. Meter,et al.  Fast quantum modular exponentiation , 2004, quant-ph/0408006.

[5]  A. Fowler,et al.  Scalability of Shor’s algorithm with a limited set of rotation gates , 2003, quant-ph/0306018.

[6]  Alán Aspuru-Guzik,et al.  Faster quantum chemistry simulation on fault-tolerant quantum computers , 2012 .

[7]  Austin G. Fowler,et al.  Erratum: Scalability of Shor's algorithm with a limited set of rotation gates [Phys. Rev. A 70, 032329 (2004)] , 2007 .

[8]  Krysta Marie Svore,et al.  A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth , 2012, Quantum Inf. Comput..

[9]  David P. DiVincenzo,et al.  Elementary gates for quantum computation NOVEMBER 1995 , 2011 .

[10]  Peter W. Shor,et al.  Algorithms for Quantum Computation: Discrete Log and Factoring (Extended Abstract) , 1994, FOCS 1994.

[11]  Agung Trisetyarso,et al.  Circuit Design for A Measurement-Based Quantum Carry-Lookahead Adder , 2009, ArXiv.

[12]  R. V. Meter Architecture of a quantum multicomputer optimized for Shor's factoring algorithm , 2006, quant-ph/0607065.

[13]  Martin Rötteler,et al.  Efficient quantum circuits for binary elliptic curve arithmetic: reducing T-gate complexity , 2012, Quantum Inf. Comput..

[14]  Rodney Van Meter,et al.  A Θ( √ n)-depth quantum adder on the 2D NTC quantum computer architecture , 2010, JETC.

[15]  Preskill,et al.  Efficient networks for quantum factoring. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[16]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[17]  Rodney Van Meter,et al.  On the Effect of Quantum Interaction Distance on Quantum Addition Circuits , 2008, JETC.

[18]  Michele Mosca,et al.  The Hidden Subgroup Problem and Eigenvalue Estimation on a Quantum Computer , 1998, QCQC.

[19]  Rodney Van Meter,et al.  Optimization of the Solovay-Kitaev algorithm , 2012, 1209.4139.

[20]  Yasuhiro Takahashi,et al.  A linear-size quantum circuit for addition with no ancillary qubits , 2005, Quantum Inf. Comput..

[21]  Stéphane Beauregard Circuit for Shor's algorithm using 2n+3 qubits , 2003, Quantum Inf. Comput..

[22]  Barenco,et al.  Approximate quantum Fourier transform and decoherence. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[23]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[24]  M B Plenio,et al.  Efficient factorization with a single pure qubit and logN mixed qubits. , 2000, Physical review letters.

[25]  Thomas G. Draper,et al.  A logarithmic-depth quantum carry-lookahead adder , 2006, Quantum Inf. Comput..

[26]  T. Monz,et al.  Realization of the quantum Toffoli gate with trapped ions. , 2008, Physical review letters.

[27]  Peter L. Montgomery,et al.  Division by invariant integers using multiplication , 1994, PLDI '94.

[28]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[29]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[30]  Y. Gurevich,et al.  Efficient decomposition of single-qubit gates intoVbasis circuits , 2013, 1303.1411.

[31]  Niels Moller,et al.  Improved Division by Invariant Integers , 2011, IEEE Transactions on Computers.