Detection of simulated multiple sclerosis lesions on T2-weighted and FLAIR images of the brain: observer performance.

PURPOSE To determine observer performance in the detection of multiple sclerosis (MS) lesions on magnetic resonance (MR) images of the brain and to assess the dependence of observer performance on lesion size, parenchymal location, pulse sequence, and supratentorial versus infratentorial level. MATERIALS AND METHODS This HIPAA-compliant protocol was approved by the institutional review board, and previously acquired MR data from a healthy volunteer and a patient with MS were used to derive parameter maps, with waiver of informed consent. Parameter maps and image simulator software were used to generate 320 phantom brain images with simulated supratentorial and infratentorial MS lesions. Images were displayed with T2-weighting or fluid-attenuated inversion recovery (FLAIR) contrast. Four readers independently evaluated the images, rating lesions on a five-point certainty scale. Observer performance was measured by using the area under the alternative free-response receiver operating characteristic curve (A(1)), and significance was determined with the z test. RESULTS Pooled A(1) scores were significantly better for FLAIR imaging (0.96 +/- 0.01 [standard error]) than for T2-weighted MR imaging (0.89 +/- 0.04) supratentorially (P = .05) but were similar for FLAIR imaging (0.90 +/- 0.06) and T2-weighted MR imaging (0.88 +/- 0.05) infratentorially. A(1) scores for cortical, deep white matter, and periventricular lesions were 0.93 +/- 0.05, 0.97 +/- 0.02, and 0.89 +/- 0.04, respectively, for FLAIR imaging and 0.77 +/- 0.06, 0.99 +/- 0.01, and 0.89 +/- 0.05, respectively, for T2-weighted MR imaging. FLAIR scores were significantly higher than T2-weighted scores for cortical lesions. Linear correlation was found between A(1) and lesion size (r = 0.5). CONCLUSION Supratentorially, performance was better with FLAIR imaging than with T2-weighted MR imaging. Infratentorially, performance was moderate with both modalities. Observers did better with FLAIR imaging in the detection of cortical lesions, and performance improved with increasing lesion size.

[1]  R T Droege,et al.  Nuclear magnetic resonance: a gray scale model for head images. , 1983, Radiology.

[2]  D. Chakraborty,et al.  Free-response methodology: alternate analysis and a new observer-performance experiment. , 1990, Radiology.

[3]  M Filippi,et al.  Comparison of MR pulse sequences in the detection of multiple sclerosis lesions. , 1997, AJNR. American journal of neuroradiology.

[4]  C Becker,et al.  Quantitative assessment of MRI lesion load in multiple sclerosis. A comparison of conventional spin-echo with fast fluid-attenuated inversion recovery. , 1996, Brain : a journal of neurology.

[5]  G. Barker,et al.  Variations in T1 and T2 relaxation times of normal appearing white matter and lesions in multiple sclerosis , 2000, Journal of the Neurological Sciences.

[6]  Xavier Golay,et al.  Defining thresholds for changes in size of simulated T2-hyperintense brain lesions on the basis of qualitative comparisons. , 2003, AJR. American journal of roentgenology.

[7]  Dev P Chakraborty,et al.  Observer studies involving detection and localization: modeling, analysis, and validation. , 2004, Medical physics.

[8]  A J Thompson,et al.  Multiple sclerosis lesion detection in the brain: A comparison of fast fluid-attenuated inversion recovery and conventional T2-weighted dual spin echo , 1997, Neurology.

[9]  N A Obuchowski,et al.  Sample size tables for receiver operating characteristic studies. , 2000, AJR. American journal of roentgenology.

[10]  J. Hanley Receiver operating characteristic (ROC) methodology: the state of the art. , 1989, Critical reviews in diagnostic imaging.

[11]  E. Melhem,et al.  Accuracy for detection of simulated lesions: comparison of fluid-attenuated inversion-recovery, proton density--weighted, and T2-weighted synthetic brain MR imaging. , 2001, AJR. American journal of roentgenology.

[12]  M Rovaris,et al.  Cortical/subcortical disease burden and cognitive impairment in patients with multiple sclerosis. , 2000, AJNR. American journal of neuroradiology.

[13]  R. Bakshi,et al.  Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions. , 2001, Archives of neurology.

[14]  A. Jackson,et al.  Memory dysfunction in multiple sclerosis corresponds to juxtacortical lesion load on fast fluid-attenuated inversion-recovery MR images. , 1999, AJNR. American journal of neuroradiology.

[15]  G. Barker,et al.  Three-dimensional fast fluid attenuated inversion recovery (3D fast FLAIR): a new MRI sequence which increases the detectable cerebral lesion load in multiple sclerosis. , 1998, The British journal of radiology.

[16]  MR fluid-attenuated inversion recovery imaging as routine brain T2-weighted imaging. , 1999, European journal of radiology.

[17]  L Bozzao,et al.  Fast spin-echo and fast fluid-attenuated inversion-recovery versus conventional spin-echo sequences for MR quantification of multiple sclerosis lesions. , 1997, AJNR. American journal of neuroradiology.