Parallel processing strategies of the primate visual system

Incoming sensory information is sent to the brain along modality-specific channels corresponding to the five senses. Each of these channels further parses the incoming signals into parallel streams to provide a compact, efficient input to the brain. Ultimately, these parallel input signals must be elaborated on and integrated in the cortex to provide a unified and coherent percept. Recent studies in the primate visual cortex have greatly contributed to our understanding of how this goal is accomplished. Multiple strategies including retinal tiling, hierarchical and parallel processing and modularity, defined spatially and by cell type-specific connectivity, are used by the visual system to recover the intricate detail of our visual surroundings.

[1]  H. S. Gasser,et al.  THE RÔLE OF FIBER SIZE IN THE ESTABLISHMENT OF A NERVE BLOCK BY PRESSURE OR COCAINE , 1929 .

[2]  G. H. Bishop FIBER GROUPS IN THE OPTIC NERVE , 1933 .

[3]  S. Zeki,et al.  The third visual complex of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[4]  M. Ogren,et al.  The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates , 1978, The Journal of comparative neurology.

[5]  J. Kaas,et al.  Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys. , 1981, Science.

[6]  D. Hubel,et al.  Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey , 1981, Nature.

[7]  P. Schiller,et al.  Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae. , 1981, Journal of neurophysiology.

[8]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[9]  I. Parnas,et al.  Expanded receptive fields of cutaneous mechanoreceptor cells after single neurone deletion in leech central nervous system. , 1982, The Journal of physiology.

[10]  D. Hubel,et al.  Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[11]  P. Grobstein Analysis of Visual Behavior, David J. Ingle, Melvyn A. Goodale, Richard J.W. Mansfield (Eds.). MIT press, Cambridge, MA and London (1982), 834 , 1983 .

[12]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  D. Hubel,et al.  Specificity of cortico-cortical connections in monkey visual system , 1983, Nature.

[14]  G. Blasdel,et al.  Termination of afferent axons in macaque striate cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  John H. R. Maunsell,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. , 1983, Journal of neurophysiology.

[16]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[17]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[19]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  G. Blasdel,et al.  Intrinsic connections of macaque striate cortex: afferent and efferent connections of lamina 4C , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the human retina , 1985, The Journal of comparative neurology.

[22]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[23]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[24]  Leslie G. Ungerleider,et al.  Contour, color and shape analysis beyond the striate cortex , 1985, Vision Research.

[25]  William H. Merigan,et al.  Spatio-temporal vision of macaques with severe loss of Pβ retinal ganglion cells , 1986, Vision Research.

[26]  D. J. Felleman,et al.  Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex , 1986, Vision Research.

[27]  R. Latto The role of inferior parietal cortex and the frontal eye-fields in visuospatial discriminations in the macaque monkey , 1986, Behavioural Brain Research.

[28]  D H Hubel,et al.  Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[30]  John H. R. Maunsell,et al.  Physiological Evidence for Two Visual Subsystems , 1987 .

[31]  L. Vaina Matters of Intelligence , 1987 .

[32]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[33]  C. R. Michael,et al.  Retinal afferent arborization patterns, dendritic field orientations, and the segregation of function in the lateral geniculate nucleus of the monkey. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[35]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[36]  M. Hawken,et al.  Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  W. Newsome,et al.  A selective impairment of motion perception following lesions of the middle temporal visual area (MT) , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  R W Rodieck,et al.  Parasol and midget ganglion cells of the primate retina. , 1989, The Journal of comparative neurology.

[40]  G. Orban,et al.  Laminar analysis of motion information processing in macaque V5 , 1989, Brain Research.

[41]  WH Merigan,et al.  Chromatic and achromatic vision of macaques: role of the P pathway , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  S. Zeki,et al.  Modular Connections between Areas V2 and V4 of Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[43]  G. Orban,et al.  Response latencies of visual cells in macaque areas V1, V2 and V5 , 1989, Brain Research.

[44]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[45]  Nikos K Logothetis,et al.  The color-opponent and broad-band channels of the primate visual system , 1990, Trends in Neurosciences.

[46]  R. Desimone,et al.  Spectral properties of V4 neurons in the macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  N. Logothetis,et al.  Role of the color-opponent and broad-band channels in vision , 1990, Visual Neuroscience.

[48]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[49]  P. Lennie,et al.  Chromatic mechanisms in striate cortex of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[51]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[52]  N. Logothetis,et al.  Functions of the colour-opponent and broad-band channels of the visual system , 1990, Nature.

[53]  J. Maunsell,et al.  The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  JH Maunsell,et al.  Does primate motion perception depend on the magnocellular pathway? , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[56]  V. Casagrande,et al.  Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[57]  H. Komatsu,et al.  Disparity sensitivity of neurons in monkey extrastriate area MST , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  A. Grinvald,et al.  Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Leslie G. Ungerleider,et al.  The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  J. Fuster,et al.  Spatial and temporal factors in the role of prefrontal and parietal cortex in visuomotor integration. , 1993, Cerebral cortex.

[61]  H. Komatsu,et al.  Relationships between color, shape, and pattern selectivities of neurons in the inferior temporal cortex of the monkey. , 1993, Journal of neurophysiology.

[62]  J C Anderson,et al.  Form, function, and intracortical projections of neurons in the striate cortex of the monkey Macacus nemestrinus. , 1993, Cerebral cortex.

[63]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  Leslie G. Ungerleider,et al.  Cortical connections of inferior temporal area TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[65]  J. Maunsell,et al.  Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[66]  J. Maunsell,et al.  Responses of neurons in the parietal and temporal visual pathways during a motion task , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  W. Merigan,et al.  Motion perception following lesions of the superior temporal sulcus in the monkey. , 1994, Cerebral cortex.

[68]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[69]  T. Yoshioka,et al.  A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. , 1994, Science.

[70]  David C. Van Essen,et al.  Multiple processing streams in occipitotemporal visual cortex , 1994, Nature.

[71]  J. B. Levitt,et al.  Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: Anatomy of interlaminar projections , 1994, Visual Neuroscience.

[72]  A. Leventhal,et al.  Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  D. Ts'o,et al.  Visual topography in primate V2: multiple representation across functional stripes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  K. Purpura,et al.  Contrast sensitivity and spatial frequency response of primate cortical neurons in and around the cytochrome oxidase blobs , 1995, Vision Research.

[75]  L. Cosmides From : The Cognitive Neurosciences , 1995 .

[76]  G. Orban,et al.  Lesions of the Superior Temporal Cortical Motion Areas Impair Speed Discrimination in the Macaque Monkey , 1995, The European journal of neuroscience.

[77]  W. Merigan,et al.  Basic visual capacities and shape discrimination after lesions of extrastriate area V4 in macaques , 1996, Visual Neuroscience.

[78]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[79]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[80]  E. Callaway,et al.  Contributions of individual layer 2–5 spiny neurons to local circuits in macaque primary visual cortex , 1996, Visual Neuroscience.

[81]  K. Hoffmann,et al.  Optic Flow Processing in Monkey STS: A Theoretical and Experimental Approach , 1996, The Journal of Neuroscience.

[82]  J. Bullier,et al.  Functional streams in occipito-frontal connections in the monkey , 1996, Behavioural Brain Research.

[83]  G. Orban,et al.  Effects of Inferior Temporal Lesions on Two Types of Orientation Discrimination in the Macaque Monkey , 1997, The European journal of neuroscience.

[84]  D. J. Felleman,et al.  Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex , 1997, The Journal of comparative neurology.

[85]  R. M. Siegel,et al.  Analysis of optic flow in the monkey parietal area 7a. , 1997, Cerebral cortex.

[86]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.

[87]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[88]  R. W. Rodieck The First Steps in Seeing , 1998 .

[89]  G. DeAngelis,et al.  Cortical area MT and the perception of stereoscopic depth , 1998, Nature.

[90]  E. Callaway,et al.  Functional Streams and Local Connections of Layer 4C Neurons in Primary Visual Cortex of the Macaque Monkey , 1998, The Journal of Neuroscience.

[91]  L. P. O'Keefe,et al.  Functional organization of owl monkey lateral geniculate nucleus and visual cortex. , 1998, Journal of neurophysiology.

[92]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[93]  D J Felleman,et al.  Segregation and convergence of functionally defined V2 thin stripe and interstripe compartment projections to area V4 of macaques. , 1999, Cerebral cortex.

[94]  Jon H. Kaas,et al.  'What' and 'where' processing in auditory cortex , 1999, Nature Neuroscience.

[95]  C. Connor,et al.  Responses to contour features in macaque area V4. , 1999, Journal of neurophysiology.

[96]  R Vogels,et al.  Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Leslie G. Ungerleider,et al.  Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys , 2000, Nature Neuroscience.

[98]  G. DeAngelis,et al.  Organization of Disparity-Selective Neurons in Macaque Area MT , 1999, The Journal of Neuroscience.

[99]  R. Zatorre,et al.  ‘What’, ‘where’ and ‘how’ in auditory cortex , 2000, Nature Neuroscience.

[100]  Keiji Tanaka,et al.  Connections between Anterior Inferotemporal Cortex and Superior Temporal Sulcus Regions in the Macaque Monkey , 2000, The Journal of Neuroscience.

[101]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[102]  G. Orban,et al.  Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. , 2000, Science.

[103]  C. Schreiner,et al.  Modular organization of frequency integration in primary auditory cortex. , 2000, Annual review of neuroscience.

[104]  Edward M Callaway,et al.  Diversity and Cell Type Specificity of Local Excitatory Connections to Neurons in Layer 3B of Monkey Primary Visual Cortex , 2000, Neuron.

[105]  I. Fujita,et al.  Disparity selectivity of neurons in monkey inferior temporal cortex. , 2000, Journal of neurophysiology.

[106]  G M Shepherd,et al.  Functional mosaic organization of mouse olfactory receptor neurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[107]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[108]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[109]  D. Dacey Parallel pathways for spectral coding in primate retina. , 2000, Annual review of neuroscience.

[110]  B. Gulyás,et al.  Olfactory Functions Are Mediated by Parallel and Hierarchical Processing , 2000, Neuron.

[111]  R. Born,et al.  Specificity of Projections from Wide-Field and Local Motion-Processing Regions within the Middle Temporal Visual Area of the Owl Monkey , 2000, The Journal of Neuroscience.

[112]  D. L. Adams,et al.  Functional organization of macaque V3 for stereoscopic depth. , 2001, Journal of neurophysiology.

[113]  A. B. Bonds,et al.  A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus) , 2001, The Journal of physiology.

[114]  W. Grueber,et al.  Tiling of the body wall by multidendritic sensory neurons in Manduca sexta , 2001, The Journal of comparative neurology.

[115]  E M Callaway,et al.  Layer-Specific Input to Distinct Cell Types in Layer 6 of Monkey Primary Visual Cortex , 2001, The Journal of Neuroscience.

[116]  E. Callaway,et al.  Two Functional Channels from Primary Visual Cortex to Dorsal Visual Cortical Areas , 2001, Science.

[117]  R. Shapley,et al.  The spatial transformation of color in the primary visual cortex of the macaque monkey , 2001, Nature Neuroscience.

[118]  J. Bullier,et al.  The role of feedback connections in shaping the responses of visual cortical neurons. , 2001, Progress in brain research.

[119]  J. Rauschecker,et al.  Functional Specialization in Rhesus Monkey Auditory Cortex , 2001, Science.

[120]  Yuh Nung Jan,et al.  Tiling of the Drosophila epidermis by multidendritic sensory neurons. , 2002, Development.

[121]  Lawrence C. Sincich,et al.  Divided by Cytochrome Oxidase: A Map of the Projections from V1 to V2 in Macaques , 2002, Science.

[122]  Nikos K. Logothetis,et al.  Three-Dimensional Shape Representation in Monkey Cortex , 2002, Neuron.

[123]  D. Boussaoud,et al.  Parietal inputs to dorsal versus ventral premotor areas in the macaque monkey: evidence for largely segregated visuomotor pathways , 2002, Experimental Brain Research.

[124]  S. Zeki,et al.  The functional organization of area V2, I: Specialization across stripes and layers , 2002, Visual Neuroscience.

[125]  Ichiro Fujita,et al.  Disparity-selective neurons in area V4 of macaque monkeys. , 2002 .

[126]  G. Orban,et al.  At Least at the Level of Inferior Temporal Cortex, the Stereo Correspondence Problem Is Solved , 2003, Neuron.

[127]  Paul D. Gamlin,et al.  Fireworks in the Primate Retina In Vitro Photodynamics Reveals Diverse LGN-Projecting Ganglion Cell Types , 2003, Neuron.

[128]  N. Schoppa,et al.  Dendritic processing within olfactory bulb circuits , 2003, Trends in Neurosciences.

[129]  Jing Liu,et al.  Functional organization of speed tuned neurons in visual area MT. , 2003, Journal of neurophysiology.

[130]  D. J. Felleman,et al.  A spatially organized representation of colour in macaque cortical area V2 , 2003, Nature.

[131]  G. Rizzolatti,et al.  Two different streams form the dorsal visual system: anatomy and functions , 2003, Experimental Brain Research.

[132]  Lawrence C. Sincich,et al.  Independent Projection Streams from Macaque Striate Cortex to the Second Visual Area and Middle Temporal Area , 2003, The Journal of Neuroscience.

[133]  E. Callaway,et al.  Parallel colour-opponent pathways to primary visual cortex , 2003, Nature.

[134]  Youping Xiao,et al.  Projections from primary visual cortex to cytochrome oxidase thin stripes and interstripes of macaque visual area 2. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[135]  A. Parker,et al.  Comparing perceptual signals of single V5/MT neurons in two binocular depth tasks. , 2004, Journal of neurophysiology.

[136]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[137]  Lawrence C. Sincich,et al.  Bypassing V1: a direct geniculate input to area MT , 2004, Nature Neuroscience.

[138]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[139]  C. Galletti,et al.  Occipital (V6) and parietal (V6A) areas in the anterior wall of the parieto‐occipital sulcus of the macaque: a cytoarchitectonic study , 2005, The European journal of neuroscience.

[140]  E. Callaway Structure and function of parallel pathways in the primate early visual system , 2005, The Journal of physiology.

[141]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[142]  C. Galletti,et al.  The relationship between V6 and PO in macaque extrastriate cortex , 2005, The European journal of neuroscience.

[143]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[144]  J. Pokorny,et al.  Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN , 2005, Nature.

[145]  Georgios A Keliris,et al.  Neurons in macaque area V4 acquire directional tuning after adaptation to motion stimuli , 2005, Nature Neuroscience.

[146]  E. Callaway,et al.  Multiple Circuits Relaying Primate Parallel Visual Pathways to the Middle Temporal Area , 2006, The Journal of Neuroscience.

[147]  G. DeAngelis,et al.  Linking Neural Representation to Function in Stereoscopic Depth Perception: Roles of the Middle Temporal Area in Coarse versus Fine Disparity Discrimination , 2006, The Journal of Neuroscience.

[148]  G. Luppino,et al.  Cortical connections of the inferior parietal cortical convexity of the macaque monkey. , 2006, Cerebral cortex.

[149]  E. Callaway,et al.  Selective and Quickly Reversible Inactivation of Mammalian Neurons In Vivo Using the Drosophila Allatostatin Receptor , 2006, Neuron.

[150]  K. Svoboda,et al.  Interdigitated Paralemniscal and Lemniscal Pathways in the Mouse Barrel Cortex , 2006, PLoS biology.

[151]  E. Callaway,et al.  The Parvocellular LGN Provides a Robust Disynaptic Input to the Visual Motion Area MT , 2006, Neuron.

[152]  G D Field,et al.  Information processing in the primate retina: circuitry and coding. , 2007, Annual review of neuroscience.

[153]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[154]  Ichiro Fujita,et al.  Representation of stereoscopic depth based on relative disparity in macaque area V4. , 2007, Journal of neurophysiology.

[155]  Bevil R. Conway,et al.  Specialized Color Modules in Macaque Extrastriate Cortex , 2007, Neuron.

[156]  H. C. Dijkerman,et al.  Somatosensory processes subserving perception and action , 2007, Behavioral and Brain Sciences.

[157]  Peter Janssen,et al.  Anterior Regions of Monkey Parietal Cortex Process Visual 3D Shape , 2007, Neuron.

[158]  T. Albright,et al.  Remembering Visual Motion: Neural Correlates of Associative Plasticity and Motion Recall in Cortical Area MT , 2007, Neuron.

[159]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[160]  S. R. Lehky,et al.  Comparison of shape encoding in primate dorsal and ventral visual pathways. , 2007, Journal of neurophysiology.

[161]  Edward M. Callaway,et al.  Specialized Circuits from Primary Visual Cortex to V2 and Area MT , 2007, Neuron.

[162]  Anna W. Roe,et al.  A Map for Horizontal Disparity in Monkey V2 , 2008, Neuron.

[163]  A. Murata,et al.  Cortical connections of the macaque anterior intraparietal (AIP) area. , 2008, Cerebral cortex.

[164]  R. Born,et al.  Integrating motion and depth via parallel pathways , 2008, Nature Neuroscience.

[165]  Edward M. Callaway,et al.  Excitatory Local Connections of Superficial Neurons in Rat Auditory Cortex , 2008, The Journal of Neuroscience.

[166]  Taro Kiritani,et al.  Local-Circuit Phenotypes of Layer 5 Neurons in Motor-Frontal Cortex of YFP-H Mice , 2008, Frontiers in neural circuits.

[167]  M. Goodale,et al.  Two visual systems re-viewed , 2008, Neuropsychologia.

[168]  G. Orban,et al.  Coding of Shape and Position in Macaque Lateral Intraparietal Area , 2008, The Journal of Neuroscience.

[169]  Guy A Orban,et al.  Higher order visual processing in macaque extrastriate cortex. , 2008, Physiological reviews.

[170]  Robert Desimone,et al.  Cortical Connections of Area V4 in the Macaque , 2008 .

[171]  Edward M. Callaway,et al.  Laminar Specificity of Functional Input to Distinct Types of Inhibitory Cortical Neurons , 2009, The Journal of Neuroscience.