Structure/function studies of glycosyltransferases.

[1]  M. Palcic,et al.  Donor substrate specificity of recombinant human blood group A, B and hybrid A/B glycosyltransferases expressed in Escherichia coli. , 2001, European journal of biochemistry.

[2]  A. Imberty,et al.  T4 phage beta-glucosyltransferase: substrate binding and proposed catalytic mechanism. , 1999, Journal of molecular biology.

[3]  M. Sippl,et al.  Fold recognition study of alpha3-galactosyltransferase and molecular modeling of the nucleotide sugar-binding domain. , 1999, Glycobiology.

[4]  Christian Cambillau,et al.  Crystal structures of the bovine β4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose , 1999, The EMBO journal.

[5]  G. Davies,et al.  Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. , 1999, Biochemistry.

[6]  R. Oriol,et al.  A Single Amino Acid in the Hypervariable Stem Domain of Vertebrate α1,3/1,4-Fucosyltransferases Determines the Type 1/Type 2 Transfer , 1999, The Journal of Biological Chemistry.

[7]  R Mollicone,et al.  Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. , 1999, Glycobiology.

[8]  L. Tabak,et al.  Structure-function analysis of the UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. Essential residues lie in a predicted active site cleft resembling a lactose repressor fold. , 1999, The Journal of biological chemistry.

[9]  Sang J. Chung,et al.  Selective inhibition of β-1,4- and α-1,3-galactosyltransferases: donor sugar-nucleotide based approach , 1999 .

[10]  A. Spence,et al.  Expression of Three Caenorhabditis elegans N-Acetylglucosaminyltransferase I Genes during Development* , 1999, The Journal of Biological Chemistry.

[11]  O Hindsgaul,et al.  Synthesis of Poly-N-acetyllactosamine in Core 2 Branched O-Glycans , 1998, The Journal of Biological Chemistry.

[12]  C. Wong,et al.  Acceptor substrate-based selective inhibition of galactosyltransferases. , 1998, Bioorganic & medicinal chemistry letters.

[13]  E. Bennett,et al.  Cloning of a Novel Member of the UDP-Galactose:β-N-Acetylglucosamine β1,4-Galactosyltransferase Family, β4Gal-T4, Involved in Glycosphingolipid Biosynthesis* , 1998, The Journal of Biological Chemistry.

[14]  E. Holmes,et al.  Human α1,3/4-Fucosyltransferases , 1998, The Journal of Biological Chemistry.

[15]  M. Marcinko,et al.  Human alpha1,3/4-fucosyltransferases. II. A single amino acid at the COOH terminus of FucT III and V alters their kinetic properties. , 1998, The Journal of biological chemistry.

[16]  R. Cummings,et al.  Molecular cloning and characterization of an alpha1,3 fucosyltransferase, CEFT-1, from Caenorhabditis elegans. , 1998, Glycobiology.

[17]  S. Munro,et al.  A Common Motif of Eukaryotic Glycosyltransferases Is Essential for the Enzyme Activity of Large Clostridial Cytotoxins* , 1998, The Journal of Biological Chemistry.

[18]  S. Munro,et al.  Activity of the yeast MNN1 alpha-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Imberty,et al.  Sequence-function relationships of prokaryotic and eukaryotic galactosyltransferases. , 1998, Journal of biochemistry.

[20]  G. Imokawa,et al.  Purification, cDNA Cloning, and Expression of UDP-Gal: Glucosylceramide β-1,4-Galactosyltransferase from Rat Brain* , 1998, The Journal of Biological Chemistry.

[21]  J. Pevsner,et al.  The expanding β4-galactosyltransferase gene family: messages from the databanks , 1998 .

[22]  J. Paulson,et al.  Mutation of the Sialyltransferase S-sialylmotif Alters the Kinetics of the Donor and Acceptor Substrates* , 1998, The Journal of Biological Chemistry.

[23]  K. Nehrke,et al.  cDNA Cloning and Expression of a Family of UDP-N-acetyl-dgalactosamine:PolypeptideN-Acetylgalactosaminyltransferase Sequence Homologs fromCaenorhabditis elegans * , 1998, The Journal of Biological Chemistry.

[24]  D. H. van den Eijnden,et al.  Molecular cloning of a human cDNA encoding beta-1,4-galactosyltransferase with 37% identity to mammalian UDP-Gal:GlcNAc beta-1,4-galactosyltransferase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Takeshi Yamamoto,et al.  Cloning and Expression of a Marine Bacterial β-Galactoside α2, 6-Sialyltransferase Gene from Photobacterium damsela JT0160 , 1998 .

[26]  A. Imberty,et al.  Conserved structural features in eukaryotic and prokaryotic fucosyltransferases. , 1998, Glycobiology.

[27]  A. V. van Kessel,et al.  A Family of Human β4-Galactosyltransferases , 1997, The Journal of Biological Chemistry.

[28]  A. Imberty,et al.  Fold recognition and molecular modeling of a lectin-like domain in UDP-GalNac:polypeptide N-acetylgalactosaminyltransferases. , 1997, Protein engineering.

[29]  L. Tabak,et al.  Identification of essential histidine residues in UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase-T1. , 1997, The Biochemical journal.

[30]  R. Field,et al.  96 On the role of manganese cation in the mechanism of α-1,3-fucosyltransferase , 1997 .

[31]  M. Palcic,et al.  Cloning and Heterologous Expression of an α1,3-Fucosyltransferase Gene from the Gastric PathogenHelicobacter pylori * , 1997, The Journal of Biological Chemistry.

[32]  M. Edbrooke,et al.  Lewis X Biosynthesis in Helicobacter pylori , 1997, The Journal of Biological Chemistry.

[33]  H. Hashimoto,et al.  Synthesis of the First Tricomponent Bisubstrate Analogue That Exhibits Potent Inhibition against GlcNAc:beta-1,4-Galactosyltransferase. , 1997, The Journal of organic chemistry.

[34]  R. Geremia,et al.  Identification of two novel conserved amino acid residues in eukaryotic sialyltransferases: implications for their mechanism of action. , 1997, Glycobiology.

[35]  A. Datta,et al.  Sialylmotifs of sialyltransferases. , 1997, Indian journal of biochemistry & biophysics.

[36]  S. Hung,et al.  Mechanism of human alpha-1,3-fucosyltransferase V: glycosidic cleavage occurs prior to nucleophilic attack. , 1997, Biochemistry.

[37]  M. Gilbert,et al.  Cloning of the Lipooligosaccharide α-2,3-Sialyltransferase from the Bacterial Pathogens Neisseria meningitidis and Neisseria gonorrhoeae* , 1996, The Journal of Biological Chemistry.

[38]  Chi‐Huey Wong,et al.  Mechanism and specificity of human α-1,3-fucosyltransferase V , 1996 .

[39]  Z. Xu,et al.  Structure-function analysis of human alpha1,3-fucosyltransferase. Amino acids involved in acceptor substrate specificity. , 1996, The Journal of biological chemistry.

[40]  J. Lowe,et al.  Human α(1,3/1,4)-Fucosyltransferases Discriminate between Different Oligosaccharide Acceptor Substrates through a Discrete Peptide Fragment (*) , 1995, The Journal of Biological Chemistry.

[41]  C Sander,et al.  Evolutionary link between glycogen phosphorylase and a DNA modifying enzyme. , 1995, The EMBO journal.

[42]  Peter Willett,et al.  β—Glucosyltransferase and phosphorylase reveal their common theme , 1995, Nature Structural Biology.

[43]  J. Paulson,et al.  The Sialyltransferase Sialylmotif Participates in Binding the Donor Substrate CMP-NeuAc (*) , 1995, The Journal of Biological Chemistry.

[44]  P. Freemont,et al.  Crystal structure of the DNA modifying enzyme beta‐glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. , 1994, The EMBO journal.

[45]  K. Drickamer Letters to the Glyco-Forum A conserved disulphide bond in sialyltransferases , 1993 .

[46]  J. Paulson,et al.  Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. , 1989, The Journal of biological chemistry.

[47]  J. Mornon,et al.  Hydrophobic cluster analysis: An efficient new way to compare and analyse amino acid sequences , 1987, FEBS letters.