Bayesian mixture models of variable dimension for image segmentation

We present Bayesian methodologies and apply Markov chain sampling techniques for exploring normal mixture models with an unknown number of components in the context of magnetic resonance imaging (MRI) segmentation. The experiments show that by estimating the number of components using sample-based approaches based on variable dimension models the discriminating power of the estimated components is improved. Two different MCMC methods are compared to perform the segmentation of simulated magnetic resonance brain scans, the reversible jump MCMC model and the Dirichlet process (DP) mixture model. The preference given to the Dirichlet process mixture model is discussed.

[1]  Mohamed-Jalal Fadili,et al.  Brain tissue classification of magnetic resonance images using partial volume modeling , 2000, IEEE Transactions on Medical Imaging.

[2]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[3]  P. Nurmi Mixture Models , 2008 .

[4]  M. West,et al.  Hyperparameter estimation in Dirichlet process mixture models , 1992 .

[5]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[6]  Baba C. Vemuri,et al.  An Accurate and Efficient Bayesian Method for Automatic Segmentation of Brain MRI , 2002, ECCV.

[7]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[8]  Koenraad Van Leemput,et al.  Automated model-based tissue classification of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[9]  Benoit M. Dawant,et al.  Morphometric analysis of white matter lesions in MR images: method and validation , 1994, IEEE Trans. Medical Imaging.

[10]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[11]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[12]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[13]  P. Saama MAXIMUM LIKELIHOOD AND BAYESIAN METHODS FOR MIXTURES OF NORMAL DISTRIBUTIONS , 1997 .

[14]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[15]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[16]  S. MacEachern,et al.  Estimating mixture of dirichlet process models , 1998 .

[17]  S. M. Steve SUSAN - a new approach to low level image processing , 1997 .

[18]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[19]  G. Casella,et al.  Mixture models, latent variables and partitioned importance sampling , 2004 .

[20]  Adrian E. Raftery,et al.  Fast automatic unsupervised image segmentation and curve detection in spatial point patterns , 1999 .

[21]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[22]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[23]  O. Cappé,et al.  Reversible jump, birth‐and‐death and more general continuous time Markov chain Monte Carlo samplers , 2003 .

[24]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[25]  M. Escobar Estimating Normal Means with a Dirichlet Process Prior , 1994 .

[26]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[27]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[28]  Adrian E. Raftery,et al.  Bayesian inference for multiband image segmentation via model-based cluster trees , 2005, Image Vis. Comput..

[29]  S. Landau,et al.  Model‐based clustering using S‐PLUS , 2006, International journal of methods in psychiatric research.

[30]  Timothy F. Cootes,et al.  Bayesian and non-Bayesian probabilistic models for medical image analysis , 2003, Image Vis. Comput..

[31]  Santanu Chaudhury,et al.  A soft-segmentation visualization scheme for magnetic resonance images. , 2005, Magnetic resonance imaging.

[32]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[33]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[34]  A. R. Ferreira da Silva A Dirichlet process mixture model for brain MRI tissue classification. , 2007, Medical image analysis.

[35]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[36]  Alan C. Evans,et al.  A fully automatic and robust brain MRI tissue classification method , 2003, Medical Image Anal..

[37]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[38]  S. MacEachern,et al.  A semiparametric Bayesian model for randomised block designs , 1996 .

[39]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[40]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[41]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[42]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[43]  Purushottam W. Laud,et al.  Bayesian Nonparametric Inference for Random Distributions and Related Functions , 1999 .

[44]  H. Damasio,et al.  Validation of Partial Tissue Segmentation of Single-Channel Magnetic Resonance Images of the Brain , 2000, NeuroImage.

[45]  Jean-Michel Marin,et al.  Bayesian Modelling and Inference on Mixtures of Distributions , 2005 .

[46]  Jerry Nedelman,et al.  Book review: “Bayesian Data Analysis,” Second Edition by A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin Chapman & Hall/CRC, 2004 , 2005, Comput. Stat..