Quantum Information Set Decoding Algorithms
暂无分享,去创建一个
[1] Nicolas Sendrier. Code-Based Cryptography , 2011, Encyclopedia of Cryptography and Security.
[2] Alexander May,et al. On Computing Nearest Neighbors with Applications to Decoding of Binary Linear Codes , 2015, EUROCRYPT.
[3] Antoine Joux,et al. Decoding Random Binary Linear Codes in 2n/20: How 1+1=0 Improves Information Set Decoding , 2012, IACR Cryptol. ePrint Arch..
[4] D. Cvetkovic,et al. Spectra of graphs : theory and application , 1995 .
[5] Jacques Stern,et al. A method for finding codewords of small weight , 1989, Coding Theory and Applications.
[6] Eugene Prange,et al. The use of information sets in decoding cyclic codes , 1962, IRE Trans. Inf. Theory.
[7] Lov K. Grover. A fast quantum mechanical algorithm for database search , 1996, STOC '96.
[8] Gilles Brassard,et al. Tight bounds on quantum searching , 1996, quant-ph/9605034.
[9] Daniel J. Bernstein,et al. Grover vs. McEliece , 2010, PQCrypto.
[10] Ghazal Kachigar. Étude et conception d'algorithmes quantiques pour le décodage de codes linéaires , 2016 .
[11] Enrico Thomae,et al. Decoding Random Linear Codes in Õ(20.054n) , 2012 .
[12] Nicolas Sendrier,et al. Analysis of Information Set Decoding for a Sub-linear Error Weight , 2016, PQCrypto.
[13] Frédéric Magniez,et al. Search via quantum walk , 2006, STOC '07.
[14] Adi Shamir,et al. A T=O(2n/2), S=O(2n/4) Algorithm for Certain NP-Complete Problems , 1981, SIAM J. Comput..
[15] Matthieu Finiasz,et al. Security Bounds for the Design of Code-Based Cryptosystems , 2009, ASIACRYPT.
[16] Andris Ambainis,et al. Quantum walk algorithm for element distinctness , 2003, 45th Annual IEEE Symposium on Foundations of Computer Science.
[17] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[18] Antoine Joux,et al. New Generic Algorithms for Hard Knapsacks , 2010, EUROCRYPT.
[19] Tanja Lange,et al. Smaller decoding exponents: ball-collision decoding , 2011, IACR Cryptol. ePrint Arch..
[20] Steve Szabo,et al. Complexity Issues in Coding Theory , 1997 .
[21] Tanja Lange,et al. Quantum Algorithms for the Subset-Sum Problem , 2013, PQCrypto.
[22] Lov K. Grover. Quantum computers can search arbitrarily large databases by a single query , 1997 .
[23] Anja Becker,et al. The representation technique : application to hard problems in cryptography , 2012 .
[24] M. Szegedy,et al. Quantum Walk Based Search Algorithms , 2008, TAMC.