From non-unitary wheeled PROPs to smooth amplitudes and generalised convolutions

We introduce the concept of TRAP (Traces and Permutations), which can roughly be viewed as a wheeled PROP (Products and Permutations) without unit. TRAPs are equipped with a horizontal concatenation and partial trace maps. Continuous morphisms on an infinite dimensional topological space and smooth kernels (resp. smoothing operators) on a closed manifold form a TRAP but not a wheeled PROP. We build the free objects in the category of TRAPs as TRAPs of graphs and show that a TRAP can be completed to a unitary TRAP (or wheeled PROP). We further show that it can be equipped with a vertical concatenation, which on the TRAP of linear homomorphisms of a vector space, amounts to the usual composition. The vertical concatenation in the TRAP of smooth kernels gives rise to generalised convolutions. Graphs whose vertices are decorated by smooth kernels (resp. smoothing operators) on a closed manifold form a TRAP. From their universal properties we build smooth amplitudes associated with the graph. Classification: 18M85, 46E99, 47G30

[1]  N. V. Dang,et al.  Properties of field functionals and characterization of local functionals , 2017, 1705.01937.

[2]  Alexander Grothendieck,et al.  Résumé des résultats essentiels dans la théorie des produits tensoriels topologiques et des espaces nucléaires , 1952 .

[3]  T. Hida,et al.  Lectures on White Noise Functionals , 2008 .

[4]  Harm Derksen,et al.  An Introduction to Quiver Representations , 2017 .

[5]  N. V. Dang,et al.  Renormalization of Feynman amplitudes on manifolds by spectral zeta regularization and blow-ups , 2017, Journal of the European Mathematical Society.

[6]  Mark W. Johnson,et al.  Realizing Kasparov's KK-theory groups as the homotopy classes of maps of a Quillen model category , 2007, 0705.1971.

[7]  A. Grothendieck,et al.  Produits Tensoriels Topologiques Et Espaces Nucleaires , 1966 .

[8]  Frank Harary,et al.  Graph Theory , 2016 .

[9]  From operads and PROPs to Feynman Processes , 2007, math/0701299.

[10]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[11]  S. Maclane,et al.  Categorical Algebra , 2007 .

[12]  N. Phillips Inverse limits of C^*-algebras , 1988 .

[13]  J. P. May,et al.  The geometry of iterated loop spaces , 1972 .

[14]  M. Marias Analysis on Manifolds , 2005 .

[15]  F. Trèves Topological vector spaces, distributions and kernels , 1967 .

[16]  Martin Markl Operads and PROPs , 2006 .

[17]  J. M. Boardman,et al.  Homotopy-everything $H$-spaces , 1968 .

[18]  S. Semmes Topological Vector Spaces , 2003 .

[19]  A. Hatzakis,et al.  Interruption of Antiretroviral Therapy and Risk of Cardiovascular Disease in Persons with HIV-1 Infection: Exploratory Analyses from the SMART Trial , 2008, Antiviral therapy.

[20]  J. M. Boardman,et al.  Homotopy Invariant Algebraic Structures on Topological Spaces , 1973 .

[21]  M. Markl,et al.  Wheeled PROPs, graph complexes and the master equation , 2009 .

[22]  J. Bonet,et al.  Some aspects of the modern theory of Fréchet spaces , 2003 .

[23]  Bruno Vallette,et al.  Dualité de Koszul des PROPs , 2004, math/0405057.

[24]  59 , 2019, Critical Care Medicine.

[25]  Mark W. Johnson,et al.  A Foundation for Props, Algebras, and Modules , 2015 .

[26]  Teimuraz Pirashvili On the PROP corresponding to bialgebras , 2001 .

[27]  BRUNO VALLETTE A Koszul duality for props , 2007 .

[28]  E. Groves A Dissertation ON , 1928 .

[29]  곽순섭,et al.  Generalized Functions , 2006, Theoretical and Mathematical Physics.