Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices

Computational theories propose that attention modulates the topographical landscape of spatial 'priority' maps in regions of the visual cortex so that the location of an important object is associated with higher activation levels. Although studies of single-unit recordings have demonstrated attention-related increases in the gain of neural responses and changes in the size of spatial receptive fields, the net effect of these modulations on the topography of region-level priority maps has not been investigated. Here we used functional magnetic resonance imaging and a multivariate encoding model to reconstruct spatial representations of attended and ignored stimuli using activation patterns across entire visual areas. These reconstructed spatial representations reveal the influence of attention on the amplitude and size of stimulus representations within putative priority maps across the visual hierarchy. Our results suggest that attention increases the amplitude of stimulus representations in these spatial maps, particularly in higher visual areas, but does not substantively change their size.

[1]  J. Maunsell,et al.  Effects of Attention on the Processing of Motion in Macaque Middle Temporal and Medial Superior Temporal Visual Cortical Areas , 1999, The Journal of Neuroscience.

[2]  F. Bremmer,et al.  Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze. , 2002, Cerebral cortex.

[3]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[4]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[5]  R. Wurtz,et al.  Visual receptive fields of frontal eye field neurons. , 1973, Brain research.

[6]  Clayton E Curtis,et al.  Prioritized Maps of Space in Human Frontoparietal Cortex , 2012, The Journal of Neuroscience.

[7]  T. Womelsdorf,et al.  Receptive Field Shift and Shrinkage in Macaque Middle Temporal Area through Attentional Gain Modulation , 2008, The Journal of Neuroscience.

[8]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[9]  S. Yantis,et al.  Selective visual attention and perceptual coherence , 2006, Trends in Cognitive Sciences.

[10]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[11]  Clayton E. Curtis,et al.  Persistent neural activity during the maintenance of spatial position in working memory , 2008, NeuroImage.

[12]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[13]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[14]  Carrie J. McAdams,et al.  Effects of Attention on Orientation-Tuning Functions of Single Neurons in Macaque Cortical Area V4 , 1999, The Journal of Neuroscience.

[15]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  John T. Serences,et al.  Computational advances towards linking BOLD and behavior , 2012, Neuropsychologia.

[17]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[18]  Jillian H. Fecteau,et al.  Salience, relevance, and firing: a priority map for target selection , 2006, Trends in Cognitive Sciences.

[19]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[20]  David J Heeger,et al.  Neural correlates of sustained spatial attention in human early visual cortex. , 2007, Journal of neurophysiology.

[21]  T. Womelsdorf,et al.  Dynamic shifts of visual receptive fields in cortical area MT by spatial attention , 2006, Nature Neuroscience.

[22]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[23]  M. Carrasco,et al.  Transient Attention Enhances Perceptual Performance and fMRI Response in Human Visual Cortex , 2005, Neuron.

[24]  Marisa Carrasco,et al.  Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence , 2013, Nature Reviews Neuroscience.

[25]  D. Heeger,et al.  Decoding and Reconstructing Color from Responses in Human Visual Cortex , 2009, The Journal of Neuroscience.

[26]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[27]  David Whitney,et al.  Attention Narrows Position Tuning of Population Responses in V1 , 2009, Current Biology.

[28]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[29]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[30]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[31]  E. Seidemann,et al.  Effect of spatial attention on the responses of area MT neurons. , 1999, Journal of neurophysiology.

[32]  Christof Koch,et al.  A Model of Saliency-Based Visual Attention for Rapid Scene Analysis , 2009 .

[33]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[34]  M. Sereno,et al.  Retinotopy and Attention in Human Occipital, Temporal, Parietal, and Frontal Cortex , 2008 .

[35]  J. Maunsell,et al.  Attention to both space and feature modulates neuronal responses in macaque area V4. , 2000, Journal of neurophysiology.

[36]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[37]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[38]  Leslie G. Ungerleider,et al.  Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. , 2001, Journal of neurophysiology.

[39]  Nikos K. Logothetis,et al.  A new method for estimating population receptive field topography in visual cortex , 2013, NeuroImage.

[40]  R. Desimone,et al.  Competitive Mechanisms Subserve Attention in Macaque Areas V2 and V4 , 1999, The Journal of Neuroscience.

[41]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  Donald J. Reichard,et al.  A SELECTIVE REVIEW , 2007 .

[43]  Janneke F. M. Jehee,et al.  Attention Improves Encoding of Task-Relevant Features in the Human Visual Cortex , 2011, The Journal of Neuroscience.

[44]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[45]  Geoffrey M Boynton,et al.  The Representation of Behavioral Choice for Motion in Human Visual Cortex , 2007, The Journal of Neuroscience.

[46]  Scott O Murray,et al.  The effects of spatial attention in early human visual cortex are stimulus independent. , 2008, Journal of vision.

[47]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[48]  Sabine Kastner,et al.  Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks. , 2007, Journal of neurophysiology.

[49]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[50]  R. Gattass,et al.  Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[51]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[52]  Stefan Treue,et al.  Expansion of MT Neurons Excitatory Receptive Fields during Covert Attentive Tracking , 2011, The Journal of Neuroscience.

[53]  J. Serences,et al.  Optimal Deployment of Attentional Gain during Fine Discriminations , 2012, The Journal of Neuroscience.

[54]  Stefan Treue,et al.  Attention Reshapes Center-Surround Receptive Field Structure in Macaque Cortical Area MT , 2009, Cerebral cortex.

[55]  Jack L. Gallant,et al.  Encoding and decoding in fMRI , 2011, NeuroImage.

[56]  N. P. Bichot,et al.  Effects of similarity and history on neural mechanisms of visual selection , 1999, Nature Neuroscience.

[57]  D. V. van Essen,et al.  Spatial Attention Effects in Macaque Area V4 , 1997, The Journal of Neuroscience.

[58]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[59]  J. Serences,et al.  Spatial attention improves the quality of population codes in human visual cortex. , 2010, Journal of neurophysiology.

[60]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[61]  J. Jonides,et al.  Overlapping mechanisms of attention and spatial working memory , 2001, Trends in Cognitive Sciences.