A Flexible Solution-Processed Memristor

A rewriteable low-power operation nonvolatile physically flexible memristor device is demonstrated. The active component of the device is inexpensively fabricated at room temperature by spinning a TiO2 sol gel on a commercially available polymer sheet. The device exhibits memory behavior consistent with a memristor, demonstrates an on/off ratio greater than 10 000 : 1, is nonvolatile for over 1.2 times 106 s, requires less than 10 V, and is still operational after being physically flexed more than 4000 times.

[1]  F. Argall Switching phenomena in titanium oxide thin films , 1968 .

[2]  Memory switching in thermally grown titanium oxide films , 1985 .

[3]  J. A. Nichols,et al.  Analog and digital circuits using organic thin-film transistors on polyester substrates , 2000, IEEE Electron Device Letters.

[4]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[5]  M. Reed,et al.  Molecular random access memory cell , 2001 .

[6]  S. Möller,et al.  A polymer/semiconductor write-once read-many-times memory , 2003, Nature.

[7]  Daniel Gamota,et al.  Printed Organic and Molecular Electronics , 2004 .

[8]  D. Stewart,et al.  The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuits , 2005 .

[9]  R. Stanley Williams,et al.  Electrical characterization of Al/AlOx/molecule/Ti/Al devices , 2005 .

[10]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[11]  J. Tour,et al.  The electrical behavior of nitro oligo(phenylene ethynylene)’s in pure and mixed monolayers , 2006 .

[12]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[13]  D. Lewis,et al.  Ink-jet fabrication of electronic components , 2007 .

[14]  R. McCreery,et al.  Electronic characteristics of fluorene/TiO2 molecular heterojunctions. , 2007, The Journal of chemical physics.

[15]  Sangsul Lee,et al.  Resistance Switching Characteristics for Nonvolatile Memory Operation of Binary Metal Oxides , 2007 .

[16]  Henrique L. Gomes,et al.  Reproducible resistive switching in nonvolatile organic memories , 2007 .

[17]  D.S.H. Chan,et al.  A flexible polymer memory device , 2007 .

[18]  R. Stanley Williams,et al.  Internal Structure of a Molecular Junction Device: Chemical Reduction of PtO2 by Ti Evaporation onto an Interceding Organic Monolayer , 2007 .

[19]  R. Williams,et al.  How We Found The Missing Memristor , 2008, IEEE Spectrum.

[20]  Kamal Asadi,et al.  Organic non-volatile memories from ferroelectric phase-separated blends. , 2008, Nature materials.

[21]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[22]  R. Williams,et al.  Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. , 2009, Small.

[23]  D. Stewart,et al.  The missing memristor found , 2009, Nature.