Performance of an Intensification Strategy Based on Learning in a Metaheuristic: Meta-RaPS with Path Relinking

Intensification and diversification in metaheuristics are two main strategies to enhance the search process and solution quality. In Meta-RaPS (Metaheuristic for Randomized Priority Search), a recent memoryless metaheuristic, intensification and diversification strategies are controlled only by the level of randomness specified by its parameters. We introduce in this paper a Path Relinking (PR) learning algorithm and integrate it into Meta-RaPS to intelligently enhance its intensification capability by learning “good” attributes of the best solutions. To evaluate its performance, the proposed Meta-RaPS PR is tested on the 0-1 Multidimensional Knapsack Problem (MKP). The results show that applying PR as an intensification strategy in Meta-RaPS is very effective as it outperformed other approaches used in the literature with this problem. The PR approach also transformed the memoryless nature of Meta-RaPS into an “intelligent” algorithm.

[1]  Yves Rochat,et al.  Probabilistic diversification and intensification in local search for vehicle routing , 1995, J. Heuristics.

[2]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[3]  Johann Dréo,et al.  Adaptive Learning Search, a New Tool to Help Comprehending Metaheuristics , 2007, Int. J. Artif. Intell. Tools.

[4]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[5]  P. John Clarkson,et al.  The development of a multi-objective Tabu Search algorithm for continuous optimisation problems , 2008, Eur. J. Oper. Res..

[6]  Fred W. Glover,et al.  Cutting and Surrogate Constraint Analysis for Improved Multidimensional Knapsack Solutions , 2002, Ann. Oper. Res..

[7]  Stefan Voß,et al.  Dynamic tabu list management using the reverse elimination method , 1993, Ann. Oper. Res..

[8]  Guanghui Lan,et al.  An effective and simple heuristic for the set covering problem , 2007, Eur. J. Oper. Res..

[9]  Rafael Martí,et al.  Approximating Unknown Mappings: An Experimental Evaluation , 2005, J. Heuristics.

[10]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[11]  Mauricio G. C. Resende,et al.  GRASP with path-relinking for the generalized quadratic assignment problem , 2011, J. Heuristics.

[12]  Reinaldo J. Moraga,et al.  Meta-RaPS approach for the 0-1 Multidimensional Knapsack Problem , 2005, Comput. Ind. Eng..

[13]  Susan H. Xu,et al.  Greedy algorithm for the general multidimensional knapsack problem , 2007, Ann. Oper. Res..

[14]  Ramón Alvarez-Valdés,et al.  GRASP and path relinking for project scheduling under partially renewable resources , 2008, Eur. J. Oper. Res..

[15]  Wojciech Bozejko,et al.  Parallel path relinking method for the single machine total weighted tardiness problem with sequence-dependent setups , 2010, J. Intell. Manuf..

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  A. L. Arcus,et al.  COMSOAL: a computer method of sequencing operations for assembly lines , 1965 .

[18]  Agnès Plateau,et al.  A hybrid search combining interior point methods and metaheuristics for 0–1 programming , 2002 .

[19]  Mauricio G. C. Resende,et al.  GRASP: basic components and enhancements , 2011, Telecommun. Syst..

[20]  Li Zhang,et al.  Decision Tree Support Vector Machine , 2007, Int. J. Artif. Intell. Tools.

[21]  Jonathan F. Bard,et al.  A reactive GRASP with path relinking for capacitated clustering , 2011, J. Heuristics.

[22]  F. Kianfar,et al.  A guided tabu search/path relinking algorithm for the job shop problem , 2012 .

[23]  Clifford C. Petersen,et al.  Computational Experience with Variants of the Balas Algorithm Applied to the Selection of R&D Projects , 1967 .

[24]  Ghaith Rabadi,et al.  Heuristics for the Unrelated Parallel Machine Scheduling Problem with Setup Times , 2006, J. Intell. Manuf..

[25]  Stefan Voß,et al.  Using surrogate constraints in genetic algorithms for solving multidimensional knapsack problems , 1997 .

[26]  Ricardo P. Beausoleil,et al.  Multi-start and path relinking methods to deal with multiobjective knapsack problems , 2008, Ann. Oper. Res..

[27]  Andrzej Jaszkiewicz,et al.  Pareto memetic algorithm with path relinking for bi-objective traveling salesperson problem , 2009, Eur. J. Oper. Res..

[28]  Yan-Feng Liu,et al.  A hybrid discrete artificial bee colony algorithm for permutation flowshop scheduling problem , 2013, Appl. Soft Comput..

[29]  Andreas Drexl,et al.  A simulated annealing approach to the multiconstraint zero-one knapsack problem , 1988, Computing.

[30]  Francisco Gortázar,et al.  Path relinking for large-scale global optimization , 2011, Soft Comput..

[31]  Fred W. Glover,et al.  Solving zero-one mixed integer programming problems using tabu search , 1998, European Journal of Operational Research.

[32]  Fred Glover,et al.  Critical Event Tabu Search for Multidimensional Knapsack Problems , 1996 .

[33]  Mohammad Mahdi Nasiri,et al.  A hybrid scatter search for the partial job shop scheduling problem , 2011 .

[34]  Reinaldo J. Moraga,et al.  A Meta-RaPS for the early/tardy single machine scheduling problem , 2009 .

[35]  Ender Özcan,et al.  A case study of memetic algorithms for constraint optimization , 2009, Soft Comput..

[36]  Mohammad Ranjbar,et al.  A hybrid scatter search for the discrete time/resource trade-off problem in project scheduling , 2009, Eur. J. Oper. Res..

[37]  Saïd Hanafi,et al.  Comparison of Heuristics for the 0–1 Multidimensional Knapsack Problem , 1996 .

[38]  Cigdem Alabas-Uslu,et al.  A self-adaptive local search algorithm for the classical vehicle routing problem , 2011, Expert Syst. Appl..

[39]  Celso C. Ribeiro,et al.  GRASP with Path-Relinking: Recent Advances and Applications , 2005 .

[40]  Arnaud Fréville,et al.  An Efficient Preprocessing Procedure for the Multidimensional 0- 1 Knapsack Problem , 1994, Discret. Appl. Math..

[41]  Mauricio G. C. Resende,et al.  GRASP heuristic with path-relinking for the multi-plant capacitated lot sizing problem , 2010, Eur. J. Oper. Res..

[42]  Mauricio G. C. Resende,et al.  A GRASP with path-relinking for the p-median problem , 2007 .

[43]  Nubia Velasco,et al.  A GRASP with evolutionary path relinking for the truck and trailer routing problem , 2011, Comput. Oper. Res..

[44]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[45]  Reinaldo J. Moraga,et al.  Meta-RaPS: a simple and effective approach for solving the traveling salesman problem , 2005 .

[46]  Gail W. DePuy,et al.  A simple and effective heuristic for the resource constrained project scheduling problem , 2001 .

[47]  Raymond R. Hill,et al.  Problem reduction heuristic for the 0-1 multidimensional knapsack problem , 2012, Comput. Oper. Res..

[48]  Ghaith Rabadi,et al.  A MetaRaPS algorithm for spatial scheduling with release times , 2011 .

[49]  Fred W. Glover,et al.  Cyber Swarm Algorithms - Improving particle swarm optimization using adaptive memory strategies , 2010, Eur. J. Oper. Res..

[50]  Celso C. Ribeiro,et al.  A GRASP with path‐relinking for private virtual circuit routing , 2003, Networks.

[51]  Celso C. Ribeiro,et al.  Path-relinking intensification methods for stochastic local search algorithms , 2012, J. Heuristics.

[52]  Wei Shih,et al.  A Branch and Bound Method for the Multiconstraint Zero-One Knapsack Problem , 1979 .

[53]  Manuel Laguna,et al.  Tabu Search , 1997 .

[54]  Vinícius Amaral Armentano,et al.  Tabu search with path relinking for an integrated production-distribution problem , 2011, Comput. Oper. Res..

[55]  Micael Gallego,et al.  GRASP and path relinking for the max-min diversity problem , 2010, Comput. Oper. Res..

[56]  Celso C. Ribeiro,et al.  A hybrid Lagrangean heuristic with GRASP and path-relinking for set k-covering , 2013, Comput. Oper. Res..

[57]  H. Martin Weingartner,et al.  Method for the Solution of the Multi-Dimensional 0/1 Knapsack Problem , 2015 .

[58]  Didier El Baz,et al.  Heuristics for the 0-1 multidimensional knapsack problem , 2009, Eur. J. Oper. Res..

[59]  F. Glover,et al.  Fundamentals of Scatter Search and Path Relinking , 2000 .

[60]  Ghaith Rabadi,et al.  Exact and heuristic algorithms for the aerial refueling parallel machine scheduling problem with due date-to-deadline window and ready times , 2012, Comput. Ind. Eng..

[61]  Xianpeng Wang,et al.  A population-based variable neighborhood search for the single machine total weighted tardiness problem , 2009, Comput. Oper. Res..