Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data.

An invariant imbedding T-matrix (II-TM) method is used to calculate the single-scattering properties of 8-column aggregate ice crystals. The II-TM based backscatter values are compared with those calculated by the improved geometric-optics method (IGOM) to refine the backscattering properties of the ice cloud radiative model used in the MODIS Collection 6 cloud optical property product. The integrated attenuated backscatter-to-cloud optical depth (IAB-ICOD) relation is derived from simulations using a CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite) lidar simulator based on a Monte Carlo radiative transfer model. By comparing the simulation results and co-located CALIPSO and MODIS (Moderate Resolution Imaging Spectroradiometer) observations, the non-uniform zonal distribution of ice clouds over ocean is characterized in terms of a mixture of smooth and rough ice particles. The percentage of the smooth particles is approximately 6% and 9% for tropical and midlatitude ice clouds, respectively.

[1]  C. Platt,et al.  Remote Sounding of High Clouds: I. Calculation of Visible and Infrared Optical Properties from Lidar and Radiometer Measurements , 1979 .

[2]  Anatoli Borovoi,et al.  Backscattering by hexagonal ice crystals of cirrus clouds. , 2013, Optics letters.

[3]  Robert E. Holz,et al.  Improving the CALIOP aerosol optical depth using combined MODIS‐CALIOP observations and CALIOP integrated attenuated total color ratio , 2011 .

[4]  Matthew Hayman,et al.  Polarization lidar operation for measuring backscatter phase matrices of oriented scatterers. , 2012, Optics express.

[5]  Paul W. Stackhouse,et al.  The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback , 1990 .

[6]  Bryan A. Baum,et al.  Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part III: High-Resolution Spectral Models from 100 to 3250 cm 1 , 2007 .

[7]  Ping Yang,et al.  Backscattering peak of ice cloud particles. , 2015, Optics express.

[8]  Claire L. Parkinson,et al.  Aqua: an Earth-Observing Satellite mission to examine water and other climate variables , 2003, IEEE Trans. Geosci. Remote. Sens..

[9]  David M. Winker,et al.  Accounting for multiple scattering in retrievals from space lidar , 2003, International Workshop on Lidar Multiple Scattering Experiments.

[10]  J. Pelon,et al.  Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans , 2015 .

[11]  Bryan A. Baum,et al.  Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm , 2014 .

[12]  J. Pelon,et al.  Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo , 2012 .

[13]  K. Liou,et al.  Light scattering by nonspherical particles: remote sensing and climatic implications , 1994 .

[14]  Bryan A. Baum,et al.  Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 um , 2013 .

[15]  G. McFarquhar,et al.  Optimal numerical methods for determining the orientation averages of single-scattering properties of atmospheric ice crystals , 2013 .

[16]  Kenneth Sassen,et al.  Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part I: Algorithm Description and Comparison with In Situ Data , 2002 .

[17]  Cornelis V. M. van der Mee,et al.  Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere , 1983 .

[18]  G. McFarquhar,et al.  Single‐scattering properties of aggregates of plates , 2009 .

[19]  A. Baran From the single-scattering properties of ice crystals to climate prediction: A way forward , 2012 .

[20]  Stephen A. Klein,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels , 2012 .

[21]  Ping Yang,et al.  Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method , 2014 .

[22]  D. Winker,et al.  CALIPSO Lidar Description and Performance Assessment , 2009 .

[23]  H. Chepfer,et al.  On the origin of subvisible cirrus clouds in the tropical upper troposphere , 2012 .

[24]  C. Platt,et al.  Remote Sounding of High Clouds. III: Monte Carlo Calculations of Multiple-Scattered Lidar Returns. , 1981 .

[25]  Andrew J. Heymsfield,et al.  A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content , 1984 .

[26]  M. Wendisch,et al.  Theory of Atmospheric Radiative Transfer: A Comprehensive Introduction , 2012 .

[27]  G. McFarquhar,et al.  Single-Scattering Properties of Aggregates of Bullet Rosettes in Cirrus , 2007 .

[28]  M. King,et al.  Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband Models , 2005 .

[29]  T. L’Ecuyer,et al.  Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect , 2013 .

[30]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[31]  B. R. Johnson Invariant imbedding T matrix approach to electromagnetic scattering. , 1988, Applied optics.

[32]  Jonathan H. Jiang,et al.  Touring the Atmosphere Aboard the A‐Train , 2011 .

[33]  Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II: Midlatitude Cirrus Microphysical and Radiative Properties , 2002 .

[34]  P. Yang,et al.  Ice particle habit and surface roughness derived from PARASOL polarization measurements , 2013 .

[35]  K. Liou,et al.  On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization , 2014, Advances in Atmospheric Sciences.

[36]  Bryan A. Baum,et al.  Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and Models. , 2005 .

[37]  H. Weickmann,et al.  THE INFLUENCE OF TEMPERATURE ON THE SHAPE OF ICE CRYSTALS GROWING AT WATER SATURATION , 1951 .

[38]  K. Liou,et al.  Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. , 1996, Applied optics.

[39]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[40]  A. Ansmann,et al.  Combined raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio , 1992 .

[41]  C. Zhou,et al.  Cirrus feedback on interannual climate fluctuations , 2014 .

[42]  Tomohiro Nagai,et al.  Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba. , 2003, Applied optics.

[43]  N. L. Abshire,et al.  Satellite and Lidar Observations of the Albedo, Emittance and Optical Depth of Cirrus Compared to Model Calculations , 1980 .

[44]  H. Treut,et al.  THE CALIPSO MISSION: A Global 3D View of Aerosols and Clouds , 2010 .

[45]  Bryan A. Baum,et al.  Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study , 2001 .

[46]  A. Borovoi,et al.  Scattering matrices for large ice crystal particles. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[47]  J. Nee,et al.  Lidar ratio and depolarization ratio for cirrus clouds. , 2002, Applied optics.

[48]  Patrick Minnis,et al.  Uncertainties Associated With the Surface Texture of Ice Particles in Satellite-Based Retrieval of Cirrus Clouds—Part I: Single-Scattering Properties of Ice Crystals With Surface Roughness , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[49]  W. Paul Menzel,et al.  Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[50]  David M. Winker,et al.  Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARS , 1995 .

[51]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[52]  K. Liou Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective , 1986 .

[53]  W. Wiscombe The Delta–M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase Functions , 1977 .

[54]  C. Platt,et al.  Lidar and Radiometric Observations of Cirrus Clouds , 1973 .

[55]  V. Noel,et al.  Extinction coefficients retrieved in deep tropical ice clouds from lidar observations using a CALIPSO-like algorithm compared to in-situ measurements from the cloud integrating nephelometer during CRYSTAL-FACE , 2006 .

[56]  Hajime Okamoto,et al.  Global analysis of ice microphysics from CloudSat and CALIPSO: Incorporation of specular reflection in lidar signals , 2010 .

[57]  K. Liou,et al.  Light scattering and absorption by nonspherical ice crystals , 2006 .

[58]  S Iwasaki,et al.  Analysis of the enhancement of backscattering by nonspherical particles with flat surfaces. , 2001, Applied optics.