Generalized flow of sets by mean curvature on a manifold

[1]  Kenneth A. Brakke,et al.  The motion of a surface by its mean curvature , 2015 .

[2]  Thierry Aubin,et al.  Nonlinear analysis on manifolds, Monge-Ampère equations , 1982 .

[3]  G. Huisken Flow by mean curvature of convex surfaces into spheres , 1984 .

[4]  M. Gage Curve shortening makes convex curves circular , 1984 .

[5]  G. Huisken Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature , 1986 .

[6]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[7]  Matthew A. Grayson,et al.  A short note on the evolution of a surface by its mean curvature , 1989 .

[8]  M. Grayson Shortening embedded curves , 1989 .

[9]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[10]  Hitoshi Ishii,et al.  The maximum principle for semicontinuous functions , 1990, Differential and Integral Equations.

[11]  G. Huisken Asymptotic-behavior for singularities of the mean-curvature flow , 1990 .

[12]  Bernhard Kawohl,et al.  On rotationally symmetric mean curvature flow , 1991 .

[13]  S. Angenent Parabolic equations for curves on surfaces Part II. Intersections, blow-up and generalized solutions , 1991 .

[14]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[15]  S. Angenent On the formation of singularities in the curve shortening flow , 1991 .

[16]  L. Bronsard,et al.  Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics , 1991 .

[17]  P. Souganidis,et al.  Phase Transitions and Generalized Motion by Mean Curvature , 1992 .

[18]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[19]  Tom Ilmanen,et al.  Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature , 1993 .