A new embedded pair of Runge-Kutta formulas of orders 5 and 6
暂无分享,去创建一个
[1] T. E. Hull,et al. Comparing Numerical Methods for Ordinary Differential Equations , 1972 .
[2] J. Dormand,et al. High order embedded Runge-Kutta formulae , 1981 .
[3] L. Shampine. Interpolation for Runge–Kutta Methods , 1985 .
[4] H. A. Watts,et al. DEPAC - design of a user oriented package of ODE solvers , 1980 .
[5] John D. Pryce,et al. Two FORTRAN packages for assessing initial value methods , 1987, TOMS.
[6] J. Verner. Explicit Runge–Kutta Methods with Estimates of the Local Truncation Error , 1978 .
[7] E. Fehlberg. Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Stepsize Control , 1968 .
[8] J. Dormand,et al. A family of embedded Runge-Kutta formulae , 1980 .
[9] L. S. Baca,et al. Practical aspects of interpolation in Runge-Kutta codes , 1987 .
[10] J. Dormand,et al. A reconsideration of some embedded Runge-Kutta formulae , 1986 .
[11] Wayne H. Enright,et al. Interpolants for Runge-Kutta formulas , 1986, TOMS.
[12] Manuel Calvo,et al. A fifth-order interpolant for the Dornand and Prince Runge-Kutta method , 1990 .
[13] L. Shampine,et al. Some practical Runge-Kutta formulas , 1986 .
[14] E. Fehlberg,et al. Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems , 1969 .