Rates and Rhythms: A Synergistic View of Frequency and Temporal Coding in Neuronal Networks

In the CNS, activity of individual neurons has a small but quantifiable relationship to sensory representations and motor outputs. Coactivation of a few 10s to 100s of neurons can code sensory inputs and behavioral task performance within psychophysical limits. However, in a sea of sensory inputs and demand for complex motor outputs how is the activity of such small subpopulations of neurons organized? Two theories dominate in this respect: increases in spike rate (rate coding) and sharpening of the coincidence of spiking in active neurons (temporal coding). Both have computational advantages and are far from mutually exclusive. Here, we review evidence for a bias in neuronal circuits toward temporal coding and the coexistence of rate and temporal coding during population rhythm generation. The coincident expression of multiple types of gamma rhythm in sensory cortex suggests a mechanistic substrate for combining rate and temporal codes on the basis of stimulus strength.

[1]  R Angus Silver,et al.  The Contribution of Single Synapses to Sensory Representation in Vivo , 2008, Science.

[2]  M. Diamond,et al.  The Role of Spike Timing in the Coding of Stimulus Location in Rat Somatosensory Cortex , 2001, Neuron.

[3]  J. Deuchars,et al.  CA1 pyramid-pyramid connections in rat hippocampus in vitro: Dual intracellular recordings with biocytin filling , 1996, Neuroscience.

[4]  W. Singer,et al.  Gamma-Phase Shifting in Awake Monkey Visual Cortex , 2010, The Journal of Neuroscience.

[5]  Jozsi Z. Jalics,et al.  NMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex , 2008, Proceedings of the National Academy of Sciences.

[6]  D. Sagi,et al.  Dynamics of Memory Representations in Networks with Novelty-Facilitated Synaptic Plasticity , 2006, Neuron.

[7]  B. Sakmann,et al.  Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex , 2004, Nature.

[8]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[9]  Günther Palm,et al.  Cell assemblies in the cerebral cortex , 2014, Biological Cybernetics.

[10]  Ifije E. Ohiorhenuan,et al.  Sparse coding and high-order correlations in fine-scale cortical networks , 2010, Nature.

[11]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[12]  Louise S. Delicato,et al.  Stimulus-induced dissociation of neuronal firing rates and local field potential gamma power and its relationship to the blood oxygen level-dependent signal in macaque primary visual cortex , 2011, The European journal of neuroscience.

[13]  R. Traub,et al.  Spatiotemporal patterns of gamma frequency oscillations tetanically induced in the rat hippocampal slice. , 1997, The Journal of physiology.

[14]  G. Buzsáki,et al.  Behavior-dependent short-term assembly dynamics in the medial prefrontal cortex , 2008, Nature Neuroscience.

[15]  William R. Softky,et al.  Simple codes versus efficient codes , 1995, Current Opinion in Neurobiology.

[16]  E. Kandel,et al.  In situ hybridization to study the origin and fate of identified neurons. , 1983, Science.

[17]  H. Markram,et al.  Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit , 2004, The Journal of physiology.

[18]  H Eichenbaum,et al.  Thinking about brain cell assemblies. , 1993, Science.

[19]  Lucy M. Carracedo,et al.  Period Concatenation Underlies Interactions between Gamma and Beta Rhythms in Neocortex , 2008, Frontiers in cellular neuroscience.

[20]  R. Christopher deCharms,et al.  Primary cortical representation of sounds by the coordination of action-potential timing , 1996, Nature.

[21]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[22]  D. W. Wheeler,et al.  Brightness Induction: Rate Enhancement and Neuronal Synchronization as Complementary Codes , 2006, Neuron.

[23]  J. Csicsvari,et al.  Organization of cell assemblies in the hippocampus , 2003, Nature.

[24]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[25]  A. Thiele,et al.  Cholinergic modulation of response properties and orientation tuning of neurons in primary visual cortex of anaesthetized Marmoset monkeys , 2006, The European journal of neuroscience.

[26]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[27]  R. Eckhorn,et al.  Coherent oscillations: A mechanism of feature linking in the visual cortex? , 1988, Biological Cybernetics.

[28]  Robert Miller,et al.  Neural assemblies and laminar interactions in the cerebral cortex , 1996, Biological Cybernetics.

[29]  Fiona E. N. LeBeau,et al.  Multiple origins of the cortical gamma rhythm , 2011, Developmental neurobiology.

[30]  K. Svoboda,et al.  Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice , 2008, Nature.

[31]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .

[32]  A K Kreiter,et al.  Synchronization and assembly formation in the visual cortex. , 2001, Progress in brain research.

[33]  M. Brecht,et al.  Sparse and powerful cortical spikes , 2010, Current Opinion in Neurobiology.

[34]  A. Thomson,et al.  Release‐independent depression at pyramidal inputs onto specific cell targets: dual recordings in slices of rat cortex , 1999, The Journal of physiology.

[35]  Wolf Singer,et al.  Temporal integration in the visual system: Influence of temporal dispersion on figure-ground discrimination , 1986, Vision Research.

[36]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[37]  M. Young,et al.  The architecture of visual cortex and inferential processes in vision. , 2000, Spatial vision.

[38]  Michael N. Shadlen,et al.  Synchrony Unbound A Critical Evaluation of the Temporal Binding Hypothesis , 1999, Neuron.

[39]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[40]  Eric D Young,et al.  First-spike latency information in single neurons increases when referenced to population onset , 2007, Proceedings of the National Academy of Sciences.

[41]  Stephen R. Williams,et al.  Pathway‐specific use‐dependent dynamics of excitatory synaptic transmission in rat intracortical circuits , 2007, The Journal of physiology.

[42]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[43]  A. Aertsen,et al.  Dynamics of neuronal interactions in monkey cortex in relation to behavioural events , 1995, Nature.

[44]  Troy W. Margrie,et al.  Neuronal Oscillations Enhance Stimulus Discrimination by Ensuring Action Potential Precision , 2006, PLoS Biology.

[45]  Xiao-Jing Wang Neurophysiological and computational principles of cortical rhythms in cognition. , 2010, Physiological reviews.

[46]  S. Cruikshank,et al.  Thalamocortical inputs trigger a propagating envelope of gamma-band activity in auditory cortex in vitro , 1999, Experimental Brain Research.

[47]  Matthew R. Krause,et al.  Synaptic and Network Mechanisms of Sparse and Reliable Visual Cortical Activity during Nonclassical Receptive Field Stimulation , 2010, Neuron.

[48]  B. Hayden,et al.  Electrophysiological correlates of default-mode processing in macaque posterior cingulate cortex , 2009, Proceedings of the National Academy of Sciences.

[49]  Shane Lee,et al.  Cortical Gamma Rhythms Modulate NMDAR-Mediated Spike Timing Dependent Plasticity in a Biophysical Model , 2009, PLoS Comput. Biol..

[50]  Arthur Gretton,et al.  Inferring spike trains from local field potentials. , 2008, Journal of neurophysiology.

[51]  Michael J. Gutnick,et al.  NMDA Receptors in Layer 4 Spiny Stellate Cells of the Mouse Barrel Cortex Contain the NR2C Subunit , 2006, The Journal of Neuroscience.

[52]  E. Rolls,et al.  Object perception in natural scenes: encoding by inferior temporal cortex simultaneously recorded neurons. , 2005, Journal of neurophysiology.

[53]  Noah J. Cowan,et al.  Synaptic Plasticity Can Produce and Enhance Direction Selectivity , 2008, PLoS Comput. Biol..

[54]  Catherine Tallon-Baudry,et al.  Induced γ-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans , 1998, The Journal of Neuroscience.

[55]  Victor A. F. Lamme,et al.  Neuronal synchrony does not represent texture segregation , 1998, Nature.

[56]  L. Berdondinia,et al.  High-density electrode array for imaging in vitro electrophysiological activity , 2005 .

[57]  Theo Geisel,et al.  Uncovering the synchronization dynamics from correlated neuronal activity quantifies assembly formation , 1994, Biological Cybernetics.

[58]  Florence Duret,et al.  Neuron participation in a synchrony-encoding assembly , 2006, BMC Neuroscience.

[59]  Fiona E. N. LeBeau,et al.  GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Philippe G Schyns,et al.  Perceptual moments of conscious visual experience inferred from oscillatory brain activity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[61]  W. Singer,et al.  Progress in Biophysics and Molecular Biology , 1965 .

[62]  J. Magee,et al.  Integrative Properties of Radial Oblique Dendrites in Hippocampal CA1 Pyramidal Neurons , 2006, Neuron.

[63]  C. Tallon-Baudry,et al.  Neural Dissociation between Visual Awareness and Spatial Attention , 2008, The Journal of Neuroscience.

[64]  J. C. Anderson,et al.  The Connection from Cortical Area V1 to V5: A Light and Electron Microscopic Study , 1998, The Journal of Neuroscience.

[65]  Miles A. Whittington,et al.  Impaired Electrical Signaling Disrupts Gamma Frequency Oscillations in Connexin 36-Deficient Mice , 2001, Neuron.

[66]  S. Epstein,et al.  Background gamma rhythmicity and attention in cortical local circuits: a computational study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Fiona E. N. LeBeau,et al.  A model of gamma‐frequency network oscillations induced in the rat CA3 region by carbachol in vitro , 2000, The European journal of neuroscience.

[68]  K. Koepsell,et al.  Oscillatory phase coupling coordinates anatomically dispersed functional cell assemblies , 2010, Proceedings of the National Academy of Sciences.

[69]  Alexander S. Ecker,et al.  Is there signal in the noise? , 2014, Nature Neuroscience.

[70]  D. Plenz,et al.  The organizing principles of neuronal avalanches: cell assemblies in the cortex? , 2007, Trends in Neurosciences.

[71]  Catherine Tallon-Baudry,et al.  Visual Grouping and the Focusing of Attention Induce Gamma-band Oscillations at Different Frequencies in Human Magnetoencephalogram Signals , 2006, Journal of Cognitive Neuroscience.

[72]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[73]  T. Hunter,et al.  Organization of cell assemblies in the hippocampus , 2003 .

[74]  W. Spain,et al.  Linear to supralinear summation of AMPA-mediated EPSPs in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[75]  J. Jefferys,et al.  High‐frequency gamma oscillations coexist with low‐frequency gamma oscillations in the rat visual cortex in vitro , 2010, The European journal of neuroscience.

[76]  Werner Lutzenberger,et al.  Distinct Gamma-Band Components Reflect the Short-Term Memory Maintenance of Different Sound Lateralization Angles , 2008, Cerebral cortex.

[77]  Ingo Fründ,et al.  Human gamma-band activity: A review on cognitive and behavioral correlates and network models , 2010, Neuroscience & Biobehavioral Reviews.

[78]  Hannah Monyer,et al.  A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Yoshio Sakurai,et al.  The search for cell assemblies in the working brain , 1998, Behavioural Brain Research.

[80]  Sonja Grün,et al.  Dynamical changes and temporal precision of synchronized spiking activity in monkey motor cortex during movement preparation , 2000, Journal of Physiology-Paris.

[81]  Nicolas Brunel,et al.  Frontiers in Computational Neuroscience Computational Neuroscience , 2022 .

[82]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[83]  N. Logothetis,et al.  Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1 , 2006, Nature Neuroscience.

[84]  Yun Wang,et al.  Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. , 2002, Cerebral cortex.

[85]  W. Singer,et al.  Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Alexander A. Fingelkurts,et al.  Topographic mapping of rapid transitions in EEG multiple frequencies: EEG frequency domain of operational synchrony , 2010, Neuroscience Research.

[87]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[88]  Roger D. Traub,et al.  Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex , 2011, The Journal of Neuroscience.

[89]  R. Andersen Encoding of intention and spatial location in the posterior parietal cortex. , 1995, Cerebral cortex.

[90]  M. Young,et al.  Primary Visual Cortex Within the Cortico-corticothalamic Network , 2002 .

[91]  A. Reyes,et al.  Nicotinic and Muscarinic Reduction of Unitary Excitatory Postsynaptic Potentials in Sensory Cortex; Dual Intracellular Recording in Vitro Slice Preparation and Recording , 2022 .

[92]  Moshe Abeles,et al.  Memory Capacity of Balanced Networks , 2005, Neural Computation.

[93]  David A Markowitz,et al.  Rate-specific synchrony: Using noisy oscillations to detect equally active neurons , 2008, Proceedings of the National Academy of Sciences.

[94]  Nicolas Brunel,et al.  Author's Personal Copy Understanding the Relationships between Spike Rate and Delta/gamma Frequency Bands of Lfps and Eegs Using a Local Cortical Network Model , 2022 .

[95]  Nancy Kopell,et al.  Minimal Size of Cell Assemblies Coordinated by Gamma Oscillations , 2012, PLoS Comput. Biol..

[96]  Louise S. Delicato,et al.  Attention Reduces Stimulus-Driven Gamma Frequency Oscillations and Spike Field Coherence in V1 , 2010, Neuron.

[97]  M. Whittington,et al.  Gamma frequency oscillations gate temporally coded afferent inputs in the rat hippocampal slice , 1998, Neuroscience Letters.

[98]  Miles A. Whittington,et al.  New Roles for the Gamma Rhythm: Population Tuning and Preprocessing for the Beta Rhythm , 2004, Journal of Computational Neuroscience.

[99]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[101]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[102]  Philippe Kahane,et al.  Exploring the electrophysiological correlates of the default ‐ mode network with intracerebral EEG , 2022 .

[103]  A. Thomson Activity‐dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro , 1997, The Journal of physiology.

[104]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[105]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[106]  J. Budd Extrastriate feedback to primary visual cortex in primates: a quantitative analysis of connectivity , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[107]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[108]  Spencer L. Smith,et al.  Parallel processing of visual space by neighboring neurons in mouse visual cortex , 2010, Nature Neuroscience.

[109]  J. Fritz,et al.  Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex , 2003, Nature Neuroscience.

[110]  David A. Leopold,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[111]  R. Traub,et al.  Spatiotemporal patterns of γ frequency oscillations tetanically induced in the rat hippocampal slice , 1997 .

[112]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[113]  C. Schroeder,et al.  Neuronal Mechanisms of Cortical Alpha Oscillations in Awake-Behaving Macaques , 2008, The Journal of Neuroscience.

[114]  R. Yuste,et al.  Ca2+ imaging of mouse neocortical interneurone dendrites: Ia‐type K+ channels control action potential backpropagation , 2003, The Journal of physiology.

[115]  J. O’Neill,et al.  The reorganization and reactivation of hippocampal maps predict spatial memory performance , 2010, Nature Neuroscience.

[116]  D. Debanne Information processing in the axon , 2004, Nature Reviews Neuroscience.

[117]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[118]  Victor A. F. Lamme,et al.  Synchrony and covariation of firing rates in the primary visual cortex during contour grouping , 2004, Nature Neuroscience.

[119]  Y. Dan,et al.  Spike timing-dependent plasticity: from synapse to perception. , 2006, Physiological reviews.

[120]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[121]  A Grinvald,et al.  Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. , 1995, Journal of neurophysiology.

[122]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[123]  J. Pernier,et al.  Induced gamma-band activity during the delay of a visual short-term memory task in humans. , 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[124]  N. Logothetis,et al.  Millisecond encoding precision of auditory cortex neurons , 2010, Proceedings of the National Academy of Sciences.

[125]  S. Lauri,et al.  Kainate receptor-induced ectopic spiking of CA3 pyramidal neurons initiates network bursts in neonatal hippocampus. , 2010, Journal of neurophysiology.

[126]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[127]  C. Koch,et al.  Invariant visual representation by single neurons in the human brain , 2005, Nature.

[128]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.