Soil organic carbon pools in alpine to nival zones along an altitudinal gradient (4400–5300 m) on the Tibetan Plateau

[1]  Zhang Yong-qiang,et al.  Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau , 2007 .

[2]  K. Nakane,et al.  Comparative study of the mass loss rate of moss litter in boreal and subalpine forests in relation to temperature , 1997, Ecological Research.

[3]  Yanhong Tang,et al.  Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China , 2005 .

[4]  P. Vitousek,et al.  The Mauna Loa environmental matrix: foliar and soil nutrients , 1992, Oecologia.

[5]  D. Read,et al.  Availability of nitrogen and phosphorus in the nival zone of the Alps , 1983, Oecologia.

[6]  H. Rehder,et al.  Nutrient turnover studies in alpine ecosystems , 1977, Oecologia.

[7]  H. Rehder Nutrient turnover studies in alpine ecosystems , 1976, Oecologia.

[8]  H. Rehder Nutrient turnover studies in Alpine ecosystems , 1976, Oecologia.

[9]  M. Grosjean,et al.  Climate Variability and Change in High Elevation Regions: Past, Present and Future , 2003 .

[10]  Huazhong Zhu,et al.  ESTIMATED BIOMASS AND PRODUCTIVITY OF NATURAL VEGETATION ON THE TIBETAN PLATEAU , 2002 .

[11]  Cheng Guodong,et al.  Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. , 2002, The Science of the total environment.

[12]  P. Bottner,et al.  Decomposition of standard plant material along an altitudinal transect (65–3968m) in the tropical Andes , 2002 .

[13]  Sandy P. Harrison,et al.  Global Biogeochemical Cycles in the Climate System , 2001 .

[14]  E. Veenendaal,et al.  Global soil organic carbon pool , 2001 .

[15]  P. Grogan,et al.  Initial effects of experimental warming on above- and belowground components of net ecosystem CO2 exchange in arctic tundra , 2000, Oecologia.

[16]  K. Nakane,et al.  Altitudinal Differences in Organic Matter Mass Loss and Fungal Biomass in a Subalpine Coniferous Forest, Mt. Fuji, Japan , 2000 .

[17]  W. M. Post,et al.  Soil carbon sequestration and land‐use change: processes and potential , 2000 .

[18]  B. Lorenzen,et al.  Controls on soil cellulose decomposition along a salinity gradient in a Phragmites australis wetland in Denmark , 1999 .

[19]  P. D. Körner Alpine Plant Life , 1999, Springer Berlin Heidelberg.

[20]  F. Chapin,et al.  RECONSTRUCTION AND ANALYSIS OF HISTORICAL CHANGES IN CARBON STORAGE IN ARCTIC TUNDRA , 1997 .

[21]  G. Guggenberger,et al.  Dissolved organic carbon in forest floor leachates: simple degradation products or humic substances? , 1994 .

[22]  Robert L. Sanford,et al.  Litter Decomposition on the Mauna Loa Environmental Matrix, Hawai'i: Patterns, Mechanisms, and Models , 1994 .

[23]  Robert J. Scholes,et al.  Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide , 1993 .

[24]  Walter C. Oechel,et al.  Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source , 1993, Nature.

[25]  S. Bridgham,et al.  Cellulose Decay in Natural and Disturbed Peatlands in North Carolina , 1991 .

[26]  W. Schlesinger Evidence from chronosequence studies for a low carbon-storage potential of soils , 1990, Nature.

[27]  Wilfred M. Post,et al.  Soil carbon pools and world life zones , 1982, Nature.

[28]  W. Schlesinger Carbon Balance in Terrestrial Detritus , 1977 .