Genetic algorithms in probabilistic finite element analysis of geotechnical problems

Abstract In application to numerical analysis of geotechnical problems, the limit-state surface is usually not known in any closed form. The probability of failure can be assessed via the so-called reliability index. A minimization problem can naturally be formed with an implicit equality constraint defined as the limit-state function and optimization methods can be used for such problems. In this paper, a genetic algorithm is proposed and incorporated into a displacement finite element method to find the Hasofer–Lind reliability index. The probabilistic finite element method is then used to analyse the reliability of classical geotechnical systems. The performance of the genetic algorithm (GA) is compared with simpler probability methods such as the first-order-second-moment Taylor series method. The comparison shows that the GA can produce the results fairly quickly and is applicable to evaluation of the failure performance of geotechnical problems involving a large number of decision variables.

[1]  Bak Kong Low,et al.  Reliability-based design applied to retaining walls , 2005 .

[2]  Scott W. Sloan,et al.  Load stepping schemes for critical state models , 2001 .

[3]  Sukhamay Kundu,et al.  Calibration of a constitutive model using genetic algorithms , 1996 .

[4]  Lashon B. Booker,et al.  Proceedings of the fourth international conference on Genetic algorithms , 1991 .

[5]  Scott W. Sloan,et al.  Aspects of finite element implementation of critical state models , 2000 .

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  C. F. Lee,et al.  Displacement back analysis for a steep slope at the Three Gorges Project site , 2001 .

[8]  Daichao Sheng,et al.  Accelerated initial stiffness schemes for elastoplasticity , 2000 .

[9]  Gordon A. Fenton,et al.  RELIABILITY OF TRADITIONAL RETAINING WALL DESIGN , 2005 .

[10]  Emir José Macari,et al.  Selection and Calibration of Soil Constitutive Model Paramaters Using Genetic Algorithms , 2005 .

[11]  John J. Grefenstette,et al.  Genetic algorithms and their applications , 1987 .

[12]  Akbar A. Javadi,et al.  IDENTIFICATION OF PARAMETERS FOR AIR PERMEABILITY OF SHOTCRETE TUNNEL LINING USING A GENETIC ALGORITHM , 1999 .

[13]  Carlos A. Coello Coello,et al.  Constraint-handling in genetic algorithms through the use of dominance-based tournament selection , 2002, Adv. Eng. Informatics.

[14]  E. Vanmarcke Probabilistic Modeling of Soil Profiles , 1977 .

[15]  L. Darrell Whitley,et al.  Using Reproductive Evaluation to Improve Genetic Search and Heuristic Discovery , 1987, ICGA.

[16]  KalyanmoyDebandSamirAgrawal KanpurGeneticAlgorithmsLaboratory,et al.  A Niched-Penalty Approach for Constraint Handling in Genetic Algorithms , 2002 .

[17]  Andrew C. Heath,et al.  Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis , 2005 .

[18]  S. Sloan,et al.  Refined explicit integration of elastoplastic models with automatic error control , 2001 .

[19]  A. M. Hasofer,et al.  Exact and Invariant Second-Moment Code Format , 1974 .

[20]  E. N. Bromhead,et al.  Computer methods and advances in geomechanics: G. Beer, J.R. Booker and J.P. Carter (eds) Balkema, Rotterdam, 1991, £122, (3 volumes) ISBN (Set) 90-6191-189-3 , 1993 .

[21]  G. Fenton,et al.  Simulation of random fields via local average subdivision , 1990 .

[22]  Paul McCombie,et al.  The use of the simple genetic algorithm in finding the critical factor of safety in slope stability analysis , 2002 .

[23]  R.,et al.  Computer methods and advances in geomechanics , 2007 .

[24]  D. V. Griffiths,et al.  Bearing capacity of spatially random soil: the undrained clay Prandtl problem revisited , 2001 .

[25]  Larry J. Eshelman,et al.  Preventing Premature Convergence in Genetic Algorithms by Preventing Incest , 1991, ICGA.

[26]  A. Goh Genetic algorithm search for critical slip surface in multiple-wedge stability analysis , 1999 .

[27]  José L. Verdegay,et al.  Constrained Multiobjective Optimization by Evolutionary Algorithms , 1998 .

[28]  Malcolm D. Bolton LIMIT STATE DESIGN IN GEOTECHNICAL ENGINEERING , 1981 .

[29]  G. Kuczera Efficient subspace probabilistic parameter optimization for catchment models , 1997 .

[30]  John E. Beasley,et al.  Constraint Handling in Genetic Algorithms: The Set Partitioning Problem , 1998, J. Heuristics.

[31]  Angus R. Simpson,et al.  THE APPLICATION OF GENETIC ALGORITHMS TO OPTIMISATION PROBLEMS IN GEOTECHNICS , 1993 .

[32]  Wang Yuexuan,et al.  Constrained multi-objective optimization evolutionary algorithm , 2005 .