Semantic Structuring of Elements and Capabilities in Ultra-flexible Factories

Abstract The capabilities of a cyber-physical production system are determined by their physical and virtual elements and their interaction. The interaction between virtual and physical entities must be precisely defined, and it is therefore necessary to develop capability models and requirements that enable self-reconfiguration of different elements and their relationships. Furthermore, an ultra-flexible production system requires communication and analysis of huge amounts of data as well as flexible, near-real-time communication between elements. This paper discusses and describes the functional and technical requirements of an ultra-flexible factory and presents an approach to the semantic structuring of elements and capabilities.

[1]  Thomas Bauernhansl,et al.  Software Model Requirements Applied to a Cyber-Physical Modular Robot in a Production Environment , 2019, Procedia CIRP.

[2]  David W. Embley Semantic Data Model , 2009, Encyclopedia of Database Systems.

[3]  A. Galip Ulsoy,et al.  Reconfigurable manufacturing systems and their enabling technologies , 2000, Int. J. Manuf. Technol. Manag..

[4]  Eeva Järvenpää,et al.  Capability Matchmaking Procedure to Support Rapid Configuration and Re-configuration of Production Systems , 2017 .

[5]  Thomas Bauernhansl,et al.  Standardized Coordinate System for Factory and Production Planning , 2017 .

[6]  Hendrik Simon,et al.  Formale Methoden für rekonfigurierbare cyber-physische Systeme in der Produktion , 2019, Autom..

[7]  A. Galip Ulsoy,et al.  Reconfigurable manufacturing systems: Key to future manufacturing , 2000, J. Intell. Manuf..

[8]  T. Bauernhansl Die Vierte Industrielle Revolution – Der Weg in ein wertschaffendes Produktionsparadigma , 2014 .

[9]  Jay Lee,et al.  Cyber-physical Systems Architecture for Self-Aware Machines in Industry 4.0 Environment , 2015 .

[10]  Thomas Bauernhansl,et al.  Metrological Production Control for Ultra-flexible Factories , 2019 .

[11]  F. Jacob,et al.  Why Go Global? The Multinational Imperative , 2008 .

[12]  László Monostori,et al.  Cyber-physical production systems: roots from manufacturing science and technology , 2015, Autom..

[13]  Michael Weyrich,et al.  A systematic approach for supporting the adaptation process of discrete manufacturing machines , 2018, Research in Engineering Design.

[14]  Thomas Bauernhansl,et al.  Matrix Fusion Factory , 2018 .

[15]  Friedemann Mattern,et al.  Vom Internet der Computer zum Internet der Dinge , 2010, Informatik-Spektrum.

[16]  Hoda A. ElMaraghy,et al.  Optimal configuration selection for Reconfigurable Manufacturing Systems , 2007 .